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ABSTRACT

This research is concerned with the optimal control of linear systems
with respect to a quadratic performance criterion, The optimization
problem is formulated with the additional constraint that the control
vector u(t) is a linear function of the output vector y(t) (u(t) = -F(t)y(t))
rather than of the state vector x(t). The optimal feedback matrix

F (t) is then chosen to minimize an "averaged' quadratic performance
criterion,

The necessary conditions provided by the matrix minimum principle
are used to determine the optimal feedback gain matrix F° (t) This
F™(t) is then shown to satisfy the Hamilton-Jacobi equation thereby
demonstrating that it is at least locally optimal, In addition, the exis-
tence of an optimal feedback gain matrix is proven,

A computer algorithm is developed to facilitate the calculation of F *(t)
for practical problems. This algorithm is programmed and used in
the solution of several examples,

Finally, a time-invariant version of the above prohlem is formulated

and solved. Agaln an algorithm for computing F" (in this case, a
constant matrix) is suggested. In addition, several examples are solved.
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CHAPTERI

INTRODUCTION

The purpose of this thesis is to consider methods for the cal-
culation of linear feedback controls for linear systems under the con-
straints that the control variables depend only on the outputs of the
system and that the control be "optimal" in some well-defined sense.
The approach that is taken is to create a precisely defined mathemati-
cal problem that corresponds to the rather vague physical problem
above, This mathematical problem is then solved and its solutions
interpreted physically, Before proceeding with this, the history and
significance of the physical problem and some previous mathematical
results are reviewed.

The problem of calculating linear feedback controls for linear
systems has been one of the most widely studied problems in control

H

theory for at least 35 years. During these 35 years the theoretical
techniques needed to design linear, time-invariant feedback controls
for single-input, single-output, linear, and time-invariant systems

has been very well developed., Furthermore, this theory has been used
to design many systems that are in operation today. This same theory
has also been applied with some success to multiple input, multiple~
output, time-invariant, linear systems. However, the classical theory
does not apply to time-varying linear systems, Furthermore, the

classical theory cannot be applied to many multiple-input, multiple-~

output, time-invariant linear systerns.
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Meanwhile, beginning with Wiener's work on stationary time
series and linear filtering and prediction problems, 3 interest has
developed in the so-called "linear regulator problem, n#s 3 Basically,
the '"linear regulator problem' is to find a control input to a linear
system which minimizes the sum of the integral squared error and
control energy. It happens that the solution of this problem is a linear
feedback control, Thus, this ""linear regulator problem" is closely
related to the problem of calculating linear feedback controls for
linear systems.

In the twenty years since its inception, the 'linear regulator
problem'" has also been extensively studied. And, some remarkable
theoretical and practical results have been obtained, In particular,

the results obtained for this problem by R. E, KalmanB’ 6,7,8

provide
crucial background for this thesis. To briefly review Kalman's results,

he begins with the linear system
x(t) = A(t)x(t) + B(t)u(t) (1.1)
and the performance criterion

T
7= 2x'(T)SX(T) + 3 f [x (HQ(t)x(t) +u (OR(Bu(t) ]t (1.2)

£

where x(t) is the state of the system and u(t) is the control, He then
finds that the optimal control E*(t) = -_l%'l(t)_lfi'(t)ﬁ*(t)§*(t) where _Is*(t)
is the solution of a matrix differential equation, the matrix Riccati
equation, Note that this optimal control is a feedback control., Further-
more, if T 00,5 = 0 and the system is time-invariant, completely

controllable and observable, this feedback gain matrix is also time-
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invariant. This is a truly elegant result. If does have the practical
drawback, however, that the feedback control depends on the entire
state of the system. As a result, in practical applications it is neces-
sary to augment the measurements of the state (the outputs) by either

10, *
9 or some other state reconstructor. ’

a Kalman filter

When one combines these two intimately related lines of
research one sees an interesting gap. Classically, engineers have
been quite successful using only output feedback, and in some cases,
dynamic compensation. On the other hand, the '"linear regulator
problem' is not suited to the design of output feedback controls unless
the output is equivalent to the state, Thus, there is a large class of
practical problems for which the available theory could be improved.
Specifically, the class of linear time-varying or time-invariant systems
whose state vector has many more components than its output vector.
The purpose of this thesis is to attempt to extend the available theory
to cover as much of the above class of problems as possible,

There is a great deal of previous research that is applicable to
the above class of problems., This research can be divided into three
major groups :

1) Some of the early research on the "linear regulator prob-
lem" and on the optimization of the parameters in a system with fixed
configuration is applicable to the above problem for time-invariant
systems, The work of Newton, Gould and Kai.ser‘22 is an early exam-

ple of this approach. Other examples are given and referenced by

“For the reader who wants an excellent treatise on Kalman's results
augmented by some excellent research of his own on the same problem,
the report by D, Kleinman!l is highly recommended.
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Willis. 23

The difficulty with these results has been that they are
dependent on the initial conditions of the system. Thus, the results
are not really feedback controls, nor, as it happens, do they apply to
time-varying systems.

2) There has been some direct research on the relation be-
tween the approach listed in (1), the Kalman linear regulator and the
Wiener linear regulator. Examples of this include Willis'?3 research

6

and some of Kalman's® research, All of the results obtained however,
apply only to time-invariant systems,
3) Several people have worked on the specific physical prob-

24,25 In particular, Rekasius and Fergus on24

lem posed in this thesis,
recently published a paper dealing with the physical problem that is
discussed herein, They take a completely different approach and ob-
tain completely different results., Their results only apply to systems
whose control is a scalar,

The results of this thesis are presented according to the fol-
lowing outline. In Chapter II, the mathematical problem is carefully
formulated for linear, possibly time-varying, systems on a finite
time interval [to, T]. Then, the necessary conditions which the solu-
tion to this problem must satisfy are derived and used to find the solu-
tion. However, this solution is not amenable to simple hand computa-
tion and so, in Chapter III, a computer algorithm is developed and
programmed, This algorithm is used to solve for the optimal control
in several examples, These examples are then analyzed at sc;me
length in an attempt to discover properties of optimal systems.

Unfortunately, the results of the first two chapters do not ex-

tend to the time-invariant case in precisely the same way as the
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Kalman problem, As a result, in Chapter IV, appropriate modifica-
tions are made to obtain a time-invariant feedback solution, Necessary
conditions, which lead to a set of algebraic equations, are derived and
used to find the optimal control. Again, examples are worked and
analyzed. Finally, the thesis is concluded with a brief summary of

the results obtained and some suggestions for future research in

Chapter V,



CHAPTER II
THEORETICAL RESULTS -
OPTIMAL OUTPUT FEEDBACK ON A FINITE INTERVAL

As we stated in the introduction, we are interested in calculat-
ing linear output feedback controls that are "optimal' in some well-
defined sense. In this chapter, we will begin by carefully formulating
a precise optimization problem. This optimization problem, and a
slight modification of this problem introduced in Chapter IV, will form
the basic mathematical problem of this thesis.

Since there already exists a large body of theoretical knowledge
about, and practical justification for, quadratic cost criteria applied to
linear systems, we would like to use a quadratic type criterion, We
show that we can use such a criterion and obtain meaningful results,

In addition, our formulation includes the Kalman linear regulatorS
(state feedback) as the special case when the output vector is the state
vector,

Once the problem has been formulated, we find its solution by
application of the necessary conditions of the matrix minimum principle.12
We next show that this same control satisfies the Hamilton-Jacobi
equation. Finally, we prove that there exists a solution to the problem

we have formulated and discuss its uniqueness.

2.1 Problem Formulation

Consider a linear system whose state vector x(t), control vector

u(t) and output vector y(t) are related by
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X(t) = A(t)x(t) + B(t)u(t) (2.1.1)

y(t) = C(t)x(t) (2.1.2)

where;
x(t) is a real n-vector
u{t) is a real m-vector

y(t) is a real r-vector

Consider also the standard quadratic cost functional

T
Limsxm + L [ [x'ogoxo + o' (OROu0]e (213)

to

It is well known [5] that the optimal control can be generated by u(t) =
-G(t)x(t) where the gain matrix G(t) can be evaluated through the solu-
tion of the Riccati equation.

Now suppose that one introduces the constraint that the control

u(t) be generated via output linear feedback, i.e.

it

u(t) = -E(t)y(t) (2.1.4)

i

or u(t) -F(t)C(t)x(t) (2.1.5)

where F(t), the feedback gain matrix, is to be determined. Under this

constraint, the system equations (2. 1.1 and 2, 1. 2) become
x(t) = [A(t) - BI)E(t)C(t)]=(t) (2.1.6)

Thus, as expected, the choice of the gain matrix E(t) will govern the

response of the closed-loop system. The closed-loop system response

can be written as:

() = &t t)x(t,) (2.1.7)
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where &(t,t,) denotes the fundamental transition matrix for the system

o)
(2.1.6), defined by

B(t, tg) = [Al) - BOE®C()]3(t, ty) 5 Bltg,tg) =L (2.1.8)

If we substitute Eqgs. (2.1.5) and (2. 1.7) into the performance
criterion (2. 1. 3) we deduce that, for any given initial state l‘(to) and

any given feedback matrix F(t), the cost is given by

5= 2 x () { B (T, 1,)S HT,¢

o)

T
+ f 3 (t,ty) [Q(t) + C'(DF (DROE(EIC(D)] &(t, ty)dt} x(t,)
to
(2.1.9)

At this point, Eqgs. (2.1.6) and (2.1,9) form an optimization
problem which, given an §(t0>’ can be solved for an optimal F(t).

Unfortunately, this optimal F(t) will in general depend on x(t Thus,

O)'
it would not really be a feedback control. In order to find an "optimal"
value for F(t) that is indépendent of the initial state it is necessary to
change the problem somewhat. The change that is made is to attempt

to determine that F(t) which is optimal in an "average' sense (a similar
idea was used in references 13 and 14). If we view the initial state

_}_c_(to) as a random variable uniformly distributed over the surface of an

A
n-dimensional unit sphere, then the expected value J of the cost

(2.1.9) is simply:

A
J=n[E (Jl_}_;_(to) uniformly distributed on the surface of the unit sphere)]

(2.1.10)



N 1 1
J = 5 tr[2(T,t,)S &(T, t,)]

T

+ f £r[ 8'(t, t,)(Q(t) + C(OE (DR(DE(EIC(E)3(t, t,)]dt

t
0 (2.1.11)

The derivation of Eq, (2.1.11) from Eq. (2.1.10) can be found in
reference 15,

This "average' cost ./I\ is now independent of the specific initial
state 3{_(1:0); it is still, of course, dependent on F(t). Thus, it is
reasonable to seek a gain matrix F(t) which minimizes the average
cost of Eq. (2.1.11) subject to the differential constraint of Eq. (2. 1. 8).
It should be noted that the transition matrix 3(t, tO) plays the role of

the "state' and tl'(le matrix F(t) plays the role of the ""control". Such

problems can be readily attacked by the matrix minimum principle.lz

2.2 - Statement of the Problem

Thus, we have formulated the following mathematical optimiza-

tion problem:
Given the system described by the matrix differential equation

3(t, ty) = [AlL) - BIE(IC(E)] (¢, tg) 5 B(tgity) = 1 (2.2.1)

and the performance functional

T =L’ (T

T

+1 [ (s begram + O E OROEOCH] Bt ) at

t
0 (2.2.2)
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A
Find the matrix F (t) that minimizes J subject to the differential

constraints imposed by the system (2.2.1), where:

A(t) is an nxn real matrix

B(t) is an nxm real matrix

C(t) is an rxn real matrix of full rank (rank r)
3(t, to) is an nxn matrix

S and Q(t) are nxn symmetric positive semi-definite
real matrices

R(t) is an mxm symmetric positive definite real matrix
A(t), B(t), C(t), Q(t) and R(t) are bounded and measurable
F(t) is the control for the given system and is composed

of measurable, but otherwise unconstrained elements;

it is an mxr real matrix
We remark that the smoothness conditions on A, B, C, Q and

5

R could be relaxed slightly.

2.3 The Main Result

The results of this chapter are summarized below., These
results specify the properties of the optimal gain matrix E*(t). We
assume that _F_*(t) exists,

The optimal gain matrix _E_*(t), i.e,, the one that minimizes the

(average) cost subject to the constraints is given by

1

E*0) = RN 0B @K (085t 1,2 (¢, £)C (007 (1) (2.3.1)

where :

A s o 1 '
(2) Plt) = C(1)7(t, t,)2 " (t, t5)C (8) > 05 Y(t) = |y (t) (2.3.2)

(b) (¢, to) is the solution of :

e

[A() - BIOET(6)C(8)] 8°(¢,t); 3 (¢

1

(¢, ¢

O) 0
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(c) _K_*(t) is the solution of:

K¥(t)=-0(t)-C(OE " (DRHE*(£)C(t)-[ Alt)-B(OE ()C(t)] K™ (¢)
-K*(t)[ Alt)-B(HE (£)C(8)] (2.3.4)
with the boundary condition at the terminal time T :

K“(T) = 8 (2.3.5)
Remarks

The proof of these results proceeds as follows :

i) We shall show that _E‘_*(t) satisfies the necessary conditions
for optimality using the matrix minimum principle [12], in Theorem
2.1,

ii) We shall demonstrate that the Hamilton~Jacobi sufficiency

conditions hold (provided that the solution exists) in Theorem 2. 2.

2.4 Proof of the Main Result

Theorem 2.1 The matrices _I:*(t), _I_{_*(t), g*(t, to), te [to, T],
defined by Egs. (2.3.1) to (2. 3.5) satisfy the necessary conditions for
optimality provided by the matrix minimum principle.

Proof: Let P(t, to) be an nxn ''costate'" matrix associated
with (t, to). Then the (scalar) Hamiltonian function H for the optimiza-

tion problem is given by

1

H =3 tr{3'(t,£))[ Q) + C(F (R(OF(EIC(t)] &(t, t)}

+tr {[ A(t) - BIOE(E)C(H)] &t t)P (5, )} (2.4.1)
We note that the Hamiltonian is a quadratic function of F(t). Hence, a

necessary condition that E*(t) minimizes H is that the following gradi-

ent matrix vanishes:
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[a5] Lab)
1555
"

RIEH(£)CH*(t, £5)2™ (£, £,)C '(¢)

- B'(P*(, t)8" (t, t)C (1) = 0 (2.4.2)

Hence, _F_‘*(t) is given by

Xt = R7H6B (0PN, t)8" (¢, 1)C (1™ 8 (2. 4. 3)
where:
alt) & CF*(t, £)2 (8, £,)C (t) (2. 4.4)

Note that ((t) is symmetric and at least positive semidefinite. Since
&(t, to) is a transition matrix and since C(t) is of rank r, then _‘dinl(t)
exists and, so, y(t) is positive definite.

In order to prove that the lF_*(t) given by Eq. (2.4.3) does

indeed minimize the Hamiltonian we proceed as folloys :

Let F(t) & F¥(t) + AF(t) (2.4.5)

(with the arguments, t and t,, suppressed for compactness
g T pp

H(F) = & tr(2"'Q28%) + 5 t[ 8 C"(E*+aF) ' RIE*+ AF)C 2¥]
+tr {[A - B(E*+AF)C] #P*") (2.4.6)
HE) = tx[72"'Q8% A*P™] + o[ -BE"+AEICEE"]
+ i[5 C8* 8 'CF RE +AR)] + te[5 CF T CAE R(ET+AT)]
(2.4.7)
H(E) = ¢ +tr[ -CTFP¥BE*+AR)] + ti[3 S BE"+AT)]

+tr[3 YAF R(E*+AF)] (2. 4. 8)

where <y is independent of F
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H(EF) = ¢, + tr[-3 CE*P*'BE*] + tz[ -3 CE*P*'BAF]

+ tr[3 YAF RF*] + tz[3 Y AF'RAF] | (2.4.9)
H(E) = ) + tr[-3 CFP'BE"] + tr[3 4AF RAF]

+ t[ 3 AF'RE¥Y] + 2] - AF'B'P*3%'] (2.4.10)
HE) = o, + tr[4 RV 2aFyar'RY?] (2.4.11)

where c, is a new constant independent of F

But, tr[B_l/ZAEEAE'Bl/Z-'] >0 forall AF#£0
because:
! H 1
a) RY2aryar'RY? = RY2ary /3 ®YEARYH 5 0
since g > 0.
b) tr[RY2AFgAFR' RY?'7= 0 ifandonly it aF'RYZy =0

for all vectors V. This is only possible if AF = 0,

Hence,

H(F) > H(F®) forall F # F* (2.4.12)

Thus, the _E* defined by (2. 4. 3) does indeed minimize the
Hamiltonian,

2) Using the necessary conditions of the matrix minimum
principle one deduces that the 'costate' matrix _12*(1:, to) satisfies the

following matrix differential equation
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& _ _ o - 1 t 3 sk &
- [A(t) - BOE (HC(H)] B (¢, t,) (2.4.13)

and, of course, g*(t, to) satisfies the equation

% sk b3 ES _
Furthermore, at the terminal T, it is necessary that

s _ o 1 _ ES
P (T,to) = ——__82(T, to) tr[g (T,to)gg(T,tO)] W 5% (T, to) (2.4.15)
We claim that the solutions of Egs. (2.4.,13) and (2. 4. 14) are

related by

Pt ty) = K'()F (bt (2.4.16)

o)
where g(_*(t) is an nxn matrix to be determined, From Eq. (2.4.16)

i

Bt tg) = KA (037t t,) + KX (037 (t, ¢ (2.4.17)

o)

Substituting Eqs. (2.4.13), (2.4.14), and (2. 4. 16) into Eq. (2. 4. 17)

we obtain

QUG (E ™ (REE*(EC(6)]E¥(t, t)-[ A(t)-BHE(6)C(0)] K (6127t t,)

= K (6)2%(t, t,)+K (D] A()-BHE (DC(5)]2%(t, ¢ (2.4.18)

o)

which yields, since g*(t, to) is always non-singular
K'(t) = -0(t)-C (OE* ()ROE(HC(H)-K ()] A(t)-BOE (£)C ()]

- [A®)-BHET(1)C(H] 'K (t) (2.4.19)
From Eqs. (2.4.15) and (2.4.16) we deduce that

_IE*(T) =S (2.4.20)
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Finally, from Eqgs. (2.4.16) and (2. 4. 3) we have

F*t) = RTUOBOK (02 (5 08" (6 1) (007 () (2.4.21)

This completes the proof that the matrices _E‘_*(t), g*(t, to) and
E*(t), as stated in Section 2.3, satisfy the necessary conditions for
optimality.

We remark that both _Ig_*(t) and g*(t, ty) satisfy matrix differen-
tial equations, It can be shown that Eqs. (2.4.14) and (2. 4. 19) satisfy
(local) Lipschitz conditions; this implies that the solutions are (locally)
unique,

We shall next prove that 3" (t, t,) and K*(t) satisfy the Hamilton-
Jacobi equation.

Theorem 2, 2 f‘_*(t}, _I_{_*(t) and 2*(1:, t

o

(2.3.5) satisfy the sufficiency conditions that result from the application

defined by Eqgs. (2.3.1)-

of the Hamilton~Jacobi theorem,

Proof: Define

Vi & [ 8 Nt (s + CUnE (mR(MEN (ST
t

* -1 k-1 %t * %=1
2 (T, to)g (t, to)dT + E (t, tO)E (T, t0)§g (T, ’CO)E (t, to)

(2, 4.22)
Differentiating with respect to time, we obtain:
Vi) = - o) - COET OROEFHCH) - VRO AW - BOF (HCH)]
- [A() - BOEXBCH] V() (2.4.23)

with terminal condition V¥(T) = 8.
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Notice that the above equation is linear and thus a unique solu-

ES % E3 %
tion for V (t) exists. Notice also that V (t) = K (t), provided F (t)

exists, because they both satisfy the identical differential equation and

boundary condition. We can evaluate the cost functional (2. 2. 2) to

obtain

A % 1 E 3k ]
J(E :t) = '2' tl‘[g (t: to)z (t)?_ (ts to)]

A
We can now compute the derivatives of J:

N % sk
8I(E 1,8 )

_ 1 st e 3 sk

N £ sk
8J(F ,t,8 )
———e e

83" (t, t,)

,

= V(02 (5 ty)

%k
= K ()2 (t,t5) =

(2.4.24)

(2. 4.25)

Pt ty)  (2.4.26)

bt IEF, )
%* e 0 s Ly A x
H(¢ 3’ :Fl PR — =)= H 2.4.27
(2 (t,t,), EN(£), ¢ W ( )
- But:
H = 2 tr[2 (6 tg) {QUHC (E (RBE (S} 2 (£ ty)]
+ e[ {A(D-BOE (S} 2 (6t )2 (5 t)V (0] (2.4.28)
or
| k! U % *
= 5 tr{2 (t t)[ QUEMHC (HE (tREE (£)C(t)]2 (£, () }
+ 4 ee{ 2 (6 [ AM)-BUOE (HSH)] B (6t} (2.4.29)
or
H' = 1 tr {2 (4, t)[QICE RE C+V (A-BF C)

+ (A-BE C) V' ]2 (t,tg)

(2. 4.30)
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Hence:

s
i

HY = 2er{(@ (6t )[-V (0] 2 (6, tg)) (2.4.31)

This implies that
A sk L]
dI(F",t,3)
—Bt ~—— 4+ H =0 (2.4.32)

In other words, the Hamilton-Jacobi equation is satisfied, as is the
terminal condition,

Thus, we have verified all the assumptions of the Hamilton-
Jacobi theorem [as given by Theorem 5.13, p. 360, of reference (4)].

To summarize the above results, we have formulated an opti-
mal control problem that corresponds to optimizing the linear output
feedback for a linear system. In addition, we have found a set of
necessary coﬁditions which must be satisfied by‘ the.optimal feedback
control if it exists, Finally, we show that any solution of the necessary
conditions is also a solution of the Hamilton-Jacobi equation, Thus, if
we can find a control which satisfies the necessary conditions we know
that it is at least a locally optimal control by the Harﬁilton-Jacobi

theorem,

2.5 Existence and Uniqueness

In this section we will discuss the existence and uniqueness of
solutions for the optimization problem defined in Section 2.2, We begin
by stating and proving a theorem which implies, as we shall demon-

strate, the existence of solutions.

Theorem 2.3 If we add the constraint that | fij(t) | < M for all
i=12,...m and j=1,2,...r to the assumptions given in the defini-
tion of the optimization problem in Section 2, 2, then an optimal gain

matrix _F:"(t) exists.
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Qutline of Proof:

1) We prove that the set of reachable states at the terminal
time T is closed and bounded (compact).

2) We prove that the performance criterion is defined and
continuous on the set of reachable states.

3) Therefore, the minimum of the performance criterion is
achieved.

Proof: Define R(¥) to be the set of states (T, to) that can be
reached by applying an admissible control F(t), tg[to, T], to the sys-
tem described by Eq. (2.2. 1) starting at g(to, to) =1,

We claim that the set R(®) is closed. This can be deduced

from any one of several published theorems on existence of solutions

to optimal control problems. 20,21

The crucial requirements in these
theorems are:

a) existence and uniqueness of the solution to the differential
equation (2.2, 1) given a "control" F(t).

b) continuity of the right-hand side of the differential equation
in F and .

c) convexity of the set {(A(t)-B(t)E(t)C(t))3(t, 1:0) |_]::(t) allowable}
for each t, ®(t, to).

All of these conditions are satisfied, as the reader can verify,

To show that R(%) is bounded we note that:

S 3t 1< 1] A - BOE®GSH || - ] et |l (2.5.1)
thus ;
T
f || Alt) - BIOE®C(E) || at
t
|| (T, ty) | < e 0 < M, = a constant

(2.5.2)
Therefore, R(®) is compact.
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A
To show that J is defined and continuous on R(2) it is suffi-
A
cient to show that the integrand of J (Eq. 2,2.2) is Lipschitz in

(¢, to) (2(t, to) bounded) for any (t, F(t)). If we define the convenience,

M(t) & Qt) + C (HF (HR(DE(H)C(E) (2.5.3)

A
Then, by taking the norm of the difference of the integrands of J for

two values of ¥(t, tO), we have:

[ e[ 2 (5 L MIEB, (¢, t0) = &, (6, tIM(DZ,(E)] || = 2 (2.5.4)
a = [| tr{ M(O[ 2, (¢, tg) + 2, (L, £) ] [2(t, ) - Bp(t. t)] [ (2.5.5)
a < n || M2 (6 t) + 258 0] 11+ 1] 2,06, 80) - 26 80) | (2.5.6)
a < K- |[2)(ttg) - 2,(tty) || (2.5.7)

A
Therefore, J is defined and continuous in R(®).

This completes the proof of Theorem 2, 3 since a function that
is defined and continuous on a comi)act set achieves its minimum on
that set.

We have already shown, in the previous section, that if an opti-
mal control exists it~ is characterized by Eq. (2.4, 3) and that this E*(t)
is the unique H-minimal control. By taking the upper bound on !fij(t)|
large enough we can insure that E*(t) is not on the boundary of the
admissible F's, Thus, we have proved the existence of solutions to
the problem defined in Section 2. 2.

Finally, although we cannot offer a proof, we believe that the
solutions to the optimization problem defined in Section 2.2 are not
unique. The best intuitive evidence of this is contained in the proof of

Lemma 3,1, If the solution to our optimization problem was unique,
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the method of proof used in the lemma would probably prove

uniqueness.,



CHAPTER III

COMPUTATION OF THE OPTIMAL FEEDBACK GAIN MATRIX

In order to implement the closed-loop system one must first
be able to compute the feedback gain matrix _F_*(t) for all te [to, T].

It can be seen from the equations (given in the previous chapter) that
specify E*(t) that the computation of E*(t) involves the solution of a
non-linear two-point boundary value problem involving matrix differen-
tial equations. Very little prior work has been done in this area.

In this chapter, we begin by outlining an algorithm for comput-
ing _E_‘*(t). Although we cannot prove that this algorithm converges to
the optimal _F_*(t) we can, and do, prove that the value of the cost
functional decreases with each itera’;ion. We next discuss the program-
ming of this algorithm and, in fact, include a Fortran version of the
program in Appendix B. Finally, we conclude the chapter with some

examples that were calculated via the program,

3.1 Theoretical Algorithm

In this section, we outline a computational procedure which
generates a sequence of matrices {En(t)}’ {_E_‘_n(t)}, and {gn(t, to)}
which hopefully converge to the optimal ones., We then prove that this
algorithm has the property that the cost decreases at each iteration.

The algorithm for computing _I§n+l(t), En-l—l(t) and gn-i—l(t’ to)
begins with a stored value for _]F_‘_n(t), te [to, T]o Knowing En(t), we

compute En + l(t) by integrating the equation

-21-
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K, () = -K_, (D[ A()-B)E_(6C(t)] - [ AlD)-BOF_(HS(O]'K_, (8

- Q(t) - C'(OE_(HR(YE_(£)C(t) (3.1.1)

backwards in time from the terminal condition _I_{_n+l(’_[’) =S. These
values of 5n+l(t), te [to, T] are stored. Then, they can be substituted

in the equation for En-l—l(t) below:

-1

. ! 1 -1
F_ (8= RT(WBUOK (68 (6 60)8, (£ t)C (g

(t) (3.1,2)

where
W) = SO, L (5 £0)8, L (8, £0)C () (3.1.3)

Of course, since 2n+1(t’ to) is still unknown, we cannot actually com-
pute _]::‘_n+1(t) yet., However, when Egs. (3.1,2) and (3. 1,3) are sub-

5

stituted into

§ 1ltitg) = [A-BOE (OS] 4 (6 tg) 5 34 (kg te)=1 (3.1.4)

it will be noted that Eq. (3. 1. 4) has only one unknown, gn_l_l(t, to).
Thus, we have a non-linear ordinary matrix differential equation with
a known initial condition which i‘s integrated forwards in time for
gn_'_l(t, to), te [to, T]. And, as each value of gn_'_l(t, to) is computed it
is substituted into Eq. (3. 1. 2) thereby generating £n+l(t)’ te [to, T].
These values are stored and used to begin the next iteration,

The iterations are begun with an initial guess for Eo(t). This
initial guess does not determine whether the algorithm converges
although it will affect the rate of convergence, We have obtained this

initial guess by setting

Eo(t) =K(T)=S and go(t, to) = g(to, tn) =1 (3.1.5)

o)
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and substituting these values into Eq. (3.1.2). This results in an
_Eo(t) that matches the boundary conditions,

In the previous chapter, we proved that

JESE) = 2 [ 2 (6 K (02t t)] (3.1.6)

Thus,

JEY tg) = 5 tx[K ()] (3.1.7)

A simple substitution shows that the cost, or performance, obtained

by using the control _F_‘_n(t), te [tO,T], is given by

JE (0, ty) = 3 tr[K_, (t,)] (3.1.8)

Thus, the lemma proven below guarantees that the value of the perform-
ance criterion decreases at each iteration, N
E__Jemma 3.1

Using the algorithm described above,

tr[§n+l(t0)] < tr[_lgn(to)] for all n (3.1.9)
Proof:
d
-c_iz[-l—{-n(t)——ls-n+1(t)] - —[A i'D’-En-l—] —n —n[—é -1—3-£n— 1—] E——n I-B—F—n 1g
+[é-§£n§] +1 K +1[é -BF C]+C F RF C (3.1.10)

S[K ()-K_, (0] =-[A-BF _C]'K +[A-BF _C]'K_, -K [A-BF C]

C)

t 1
K [A-BECIHBE _C)K -(BF C)K +K (BF ,C

K _BF C-C'F. RF "' RRIRF c+K BR™IBK
—n=—n— — —n-1l—=Zn- — —==n="—=n=— —

K

I

BRIB'K (3.1.11)
n— — =n
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FIEAD-Kyy (0] =-[A-BF O], K, )-(K -K, ) )[A-BF,C]

-1 1
-[C'F, \R-KBIR[RE, C-B'K,]

== ~—n- —n— ——=n-1
H{C'F R-K BJR"'[RF C-B'K,] (3.1.12)

Integrating Eq. (3.1.12) and taking the trace, we obtain:

T
b K,y (6] -t K ()] = [ e lEp(r e[ C'EL_ | R-K, BIR RE, 1 C-B'K )
to
-(C'FLR-K BIR™(RF, C-B'K )]Z,(, to)}dr (3.1.13)

We now wish to show that the integrand in Eq. (3.1, 13) is posi~

tive for all 7, To do this, we first introduce three facts,.

n
I) If X is a real symmetric nxn matrix, tr[_)_(_]’: = _}_ci'_}§_§i
i=1

where {_}_{1} is an arbitrary orthornormal basis for R,

(3.1, 14)

Proof : X, = _l?ﬁi where e, is an element of the natural

basis and P is an orthogonal matrix (PPl =1).

n n
Then tr[X] = tx[E'XP] = = ePXPe; = I xXx,

) [C(m)E (T, ty)8, (T, t,)C (1)] T ()2 (7, ty) = [8. (7, t,)C (1] T
where { denotes pseudo-inverse. (3.1.15)

Proof: See Appendix A, Corollary A, 2
II1) If X is an arbitrary real n-vector, Xy can be written as

1 1
x,€R[8_(7,£,)C (1)]
Xg = _}_:1 + x5 where

x,€R 8 (r,t)C (] T =77 [S(mE (. tg)]
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In order to evaluate the trace under the integral at time T, we

choose an orthonormal basis {_}_{1} such that

xR [2(1,4)C(1)]  for i <m
(3.1.16)
}—{iéﬂ [E;(T:to)g'('r)]l for m < i<n

Using facts I and III, we see that the integrand in Eq. (3.1, 13)

1 i -1
tr{8 (r,t)[(CE__;R-K B)R™ (RE

t
= e 1.(_:'13_ En)

-(C'F!R-K B)R"NRE _C-B'K )]z (r,t))} & {1}  (3.1.17)

—-n—-

n
: '
tr[;'[_n] = i§1§i£n§i (3.1.18)

where x; are elements of the special basis (3.1.16).
We see that for §i€77 [E(T)gh(T,tO)] or equivalently, x; such
that m < i < n:

- ]
x1 x =x8 (1,t,)[K BR 'BK -K
=i—n=i =i-—n 0'l—p—— —=—n —

(3.1.19)

For all the other X 516% [g;('r,to)g_'(‘r)], we make use of fact II to

show,

F_(TC(TE (T,ty) = B H1)B (1)K _(1)2 (7, t)8. (T, t)C (7)
[S(m)B (7, ty)2: (7, £)C (1] T C(m)E_ (7, t,) (3. 1. 20)

or,

F_(T)C(1)E (7, t5) = R (7)B' (1K _(1)2 (T, t,)

o) =

[2.(r, t)C (M][ 20T, t)C (1)]T (3.1.21)
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Using Theorem A2, of Appendix A

E_(T)C(1)2 (7, ty)x, = B U7)B (1)K (1) (v, t)x, for x €A [3.C'|

(3.1, 22)

Thus, for the remaining X i< m,

1 [ 1 -1 t
-—)Si-ln-}—{i = Eign("" to)[g_ Fo_ 1_.11'51}@)5 (_%En_ 19'13. En)]gn("" to)l‘i >0

(3.1.23)
Hence, the integrand in Eq. (3. 1.13) is positive and the lemma is
proven,
This lemma does not guarantée convergence of the proposed
algorithm., For example, the following sequence of matrices satisfies

the condition of Eq. (3. 1.9) and does not converge.

1+(-1)" 0
K (tg) = ) . ; n=1,2,... (3.1.24)
0 [1+= - (-1)7]
n
) 1
tr[K (tg)] = 2 t—=~2asn-w (3. 1. 25)

However, the algorithm and the lemma are still useful in solving many
problems, First, the algorithm is basically an approximation in
policy space type of algorithm., This suggests that convergence, if it
occurs, is likely to be fairly rapid and this suggestion is borne out by
our experience (5~ 10 iterations were generally sufficient to solve the
examples given in Section 3. 3), Secondly, the non-convergence of the
algorithm would seem to correspond to rather an odd behavior of the
system. In particular, one likely cause of non-convergence suggests

itself, That is a system with two distinct feedback gain matrices F(t),
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A
both of which give identical and minimal values of J, but, both of

which give distinct values of the performance matrix K(t This

o)
possibility suggests, as we mentioned earlier, that more than one
solution may exist for our optimization problem,

We remark that one could use a gradient algorithm to generate
a solution to the optimization problem proposed in Section 2.2. Such
an algorithm would be guaranteed to always reduce the cost at each
iteration, However, it would tend to converge fairly slowly,

Finally, in the examples reported herein, we did not encounter

any of the convergence problems mentioned above.

3.2 The Computer Program

The Fortran listing and an explanation of the use of the compu-
ter program are included in this thesis as Appendix B. The discussion
in this section is intended to clarify the purposes and limitations of
this program. It is hoped that the reader, armed with this discussion,
can decide whether this program is adequate for hié purposes, And, if
it is not, he can make whatever revisions are necessary with a mini-
mum of effort., With this in mind, we discuss our choice of integration
routines and the accuracy of the program and suggest some possible
improvements,

The program was essentially determined by three critical
choices :

1) How would the necessary storage of E‘_n(t) and

K (t) be accomplished?
2) What integration routine should be used to solve

a) Equation (3.1.1) for K ?

n+1(t)
: 2
b) Equation (3. 1. 4) for 2n+1(t’ to) ?
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Since the program was intended to provide theoretical insight to
further our understanding of the general problem rather than to solve
specific control problems, the answers to the above questions were
primarily dictated by the desire for an easy to write program., Thus,
no great effort was expended to generate a particularly efficient (fast)
or an extremely accurate program,

The first choice was to use only core storage since using tapes
or disks involves a much greater programming effort. At the M.I.T.
Computation Center the user has about 70, 000 words available in core
storage. This number determined the maximum dimensions of the
problems we could solve to be approximately 2 nZ N < 5x 104 (where
n is the dimension of the state-vector and N is i:he number of time
steps).

N

The choice of an integration routine for Eq. (3.1.1), the equa-
tion for _Ign_l_l(t), was simplified by the fact that it is a linear equation,
As a result, a fourth order Runge-Kutta integration routine was easy
to write and was, in fact, written, Thus, determination of -I£n+1(t) is
quite accurate, On the other hand, the choice of an integration routine
for Eq. (3.1.4), the equation for gn_l_l(t, to), was fairly difficult, The
equation is non-linear and involves the calculation of the inverse of a
matrix at each step. As a result, a Runge-Kutta routine would have
been complicated to write and comparatively time-consuming to run,
As a result, Euler's Method was programmed as a first attempt at
integrating Eq. (3.1.4). This routine performed well enough for our
immediate purposes and so we have not yet replaced it by a better inte-

gration routine,
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Having made these choices, and written the program, the
question of accuracy arises., It was impossible to obtain a good theo-
retical estimate of the accuracy of the program. The accuracy was
studied experimentally by solving the same problem using different
step sizes in the integrations. These experiments suggest two
conclusions:

1) The accuracy of the computation depends on

a = max I
teftg T]
f"(t, to) to the step size. We found that the accuracy was of the

_IE:(’C) || and on the ratio of the "time-constant' of

order of magnitude of the step size provided the '"time-constant" of
8%(t,t;) > 100 x (step size) and a < 10°.

2) Reducing the step size, i.e. - improving the accuracy of
the program, sometimes reduced the number of iteriltions required
for convergence,.

We believe that three improvements in the program would
probably be useful. First, the routine for inverting the matrix (t)
could be more efficient and more accurate., Second, replacing the
present integration routine for Eq. (3. 1.4) by a Predictor-Corrector
scheme would improve the accuracy and, possibly, the speed of the
program, Finally, it would be useful to have more flexibility in the
choice of a value of Eo(t). In particular, for some problems it is

necessary to choose a time-varying initial matrix of control gains.

All of these improvements will be made in the near future.

3.3 Examples
The computer program described in Appendix B was used to
calculate the optimal linear output feedback control for several exam-

ples. These examples are discussed below because they provide
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additional information about the practicality of these theoretical

results, about the accuracy and speed of the computer program and

about linear output feedback control systems in general.

Example 1:

The system is
(t,0) = [A-BfC]Ht,0) ; #(0,0) = I

and, the performance criterion is:

T
1

I=3 f tr[3'(t, 0)(Q+£°C C)3(t, 0)]dt

0

The parameters are:
0 1 0 10
.é = E = E =11 0 g = )
-2 -3 1 0

The problem was solved for three values of T:

a)'if‘=10
b) T = 8
c) T =6

10

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)
(3.3.5)
(3.3.6)

The open-loop system is both controllable and observable and has the

transfer function

y(s) _ 1
u(s) s+3s+2

(3.3.7)

Thus, the open-loop system has poles ats = -2, 8 = -1 and is there-

fore stable,

The solutions to the above problems are plotted in Figs, 1

through 4, Figure 1l is a plot of the optimal trajectory from each of
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1.0

0.8

0.6

0.4

0.2

-0.8 -

Fig. 1 "Optimal" Trajectories for Example 1
Plotted in the Phase Plane
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Fig. 2 Optimal Feedback Gain
for Example la

Fig., 3 Optimal Feedback Gain
for Example 1b K

P

-04

Fig., 4 Optimal Feedback Gain
for Example lc
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two independent initial conditions plotted in the phase plane, Thus, in
effect, it is a plot of the optimal transition matrix g*(t, 0). Figures 2,
3, and 4 are plots of the optimal feedback gain f*(t) versus time for
each of the three intervals for which f*(t) was computed.

There are several interesting aspects to these plots. Probably
the most striking feature is that all three plots of f*(t) are identical
over the first three seconds and over the last three seconds. In fact,
the time interval is divisible into three definite parts, Part one is an
initial transient lasting about three seconds. Part two is a '"steady
state' value (which is approximately 0) that is held until part three
begins, Part three is a terminal transient which lasts for slightly
more than three seconds.

In this example, an explanation for the initia{ transient and the
"steady state'' value is suggested by Fig., 1. Notice, in Fig. 1, that
all initial states are driven approximately to the line X = -x%, during
the’initial transient period of f*(t). This line has the following
properties:

1) Itis an eigenvector of the open-loop system for the eigen-
value \ = -1, That is, with f = 0, the state will decay to zero aloﬁg
the line Xy = X,

2) For the given system, if the initial condition is known to
lie on the line Xy = =Xy, and if we compute the time-invariant { which

minimizes

(¢ 0]
3= %- f [10 xlz(t) +10 x5(1) + flez(t)]dt (3. 3. 8)
0
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for that known initial condition,then the optimal f = 0, In fact, the
Kalman optimal control for states on the line Xy = -%, is zero.
Thus, the first two portions of the time-variation of the gain
f*(t) seem to be explained by:
a) During the initial transient, the initial state, which is
uniformly distributed in probability on the surface of
the unit sphere, is driven onto the line Xy = -X,. This
"identifies' the state,
b) During the "steady state' interval, the optimal feed-
back control for the, by now, known state is used.
Unfortunately, we have not yet found as satisfying a physical interpre-
tation of the terminal transient of the feedback gain f*(t). However,
we note that the '"average' value of f*(t), because of’the terminal trans-
ient, is approximately equal to zero, the 'steady-state' value,
Finally, we compare the value of the performance criterion
(3. 3.2) for three alternative feedback control laws:
1) If £(t) = 0, then T = 15
2) If f(t) = f*(t), as shown in Fig, 2, then .’T\ = 14,1

3) If we use the Kalman optimal control, i.e. =~
1et_(2=_l_, then = T7.4.

From these figures, we see that the best position feedback control is
about 100% worse than the Kalman optimal control. On the other hand,
the time variation in f*(t) improves the performance of the system by
about 6% over the control f(t) = 0.

Example 2:

Example 2 should be studied in conjunction with example 3. In

both examples, the system and the performance criterion are identical
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except for the choice of the output matrix C. Thus, the two examples
can be viewed as a study of the comparative value of position feedback
versus velocity feedback in a second order servomechanism,
The system equation is identical to Eq. (3. 3.1) and the per-
formance criterion is identical to Eq. (3.3.2). The parameters are:
0 1 0 10 0

A = B = cC=11 0o Q-= (3.3.9)
-10 -2 1 0o 10

T = 10 (3.3.10)

The open-loop system is controllable and observable and has transfer

function:
1
%3 = ke (3.3.11)
s +2s+10

4

Thus, it is a stable system with poles at s = =1 £ j /3 .

The solution to this problem is plottéd in Figs. 5 and 6. Again,
Fig, 5 is effectively a phase plane ‘plot of the optimal transition matrix
E*(t, 0) while Fig. 6 is a plot of f*(t) versug time, Figure 7 is also
devoted to this example except that in Fig. 7, f*(t) is determined for
T = 6.

Again, as in the previous example, the graph of f*(t) (Fig. 6)
has an evident initial transient, ''steady state'' value, and final trans-
ient. In Fig., 7, the ''steady state'' value does not appear because the
two transient intervals overlap slightly. It is interesting to note that
the initial transient in this example is almost twice as long as the
initial transient in the previous example, Furthermore, the final trans-
ient exists for only half as long as in the previous example. However,

the longest time constant of the open-loop system is identical in both



-36-

Fig. 5

-8

"Optimal'" Trajectories for Example 2
Plotted in the Phase Plane
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£ (1)

Fig. 6 Optimal Feedback Gain
: for Example 2

Fig. 7 Optimal Feedback Gain
for Example 2 with T = 6
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Fig. 8 The Ellipses on which the States are Distributed at
t=0, t=1, t=1.6 for the Optimal System of Example 2
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examples., Thus, one reasonable conjecture, that the length of the )
transient periods in f*(t) is determined by the open-loop time con-
stants of the system, is probably false,

If we study the initial transient of f*(t) a bit more carefully,
we note that it could be approximatgly described by a decaying expo-~
nential multiplied by a sinusoid., It does not seem too far-fetched to
suggest that the period of that sinusoid is half the period of the natural
oscillations of the open-loop system.

This suggests that a careful attempt to correlate the -oscilla-
tions in the initial transient.of f*(t) with the values of the optimal
transition matrix g*(t, 1:0) might be rewarding. First, we remark
that the choice of the gain f*(t) must be based on two pieces of infor-
mation:

1) The value of xl(t) (the position) is measured’at each

instant of time,

2) Although xZ(t) {the ve_locit}y) is not measured and is not
directly computable, some information about xz(t) can

be obtained from knowledge of xl(t) and the following

fact. The initial state of the system is known to have

been uniformly distributed in probability on the surface

of the unit sphere, This probability distribution is

propagated by the system until, at each instant of time,

the state of the system will be distributed in probability

on the surface of an ellipse in the phase plane.

A glance at Fig. 1 shows that, in the previous example, after about

t = 1.5 this ellipse is approximately a -45° line. Thus, knowledge of

Xl(t) implies precise knowledge of xZ(t). In the present example, the
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ellipse on which the state is distributed is less obvious from Fig. 5.
As a result, we have plotted these ellipses, for several values of the
time, in Fig, 8.

Although it is not plotted in Fig. 8, our calculations show that
the ellipse on which the states are distributed at t = 2,2 is identical,
except in size, to the ellipse which is shown at t = 1. In other words,
the orientation and the ratio of the length of the major-axis to the
length of the minor-axis are the same for both ellipses, Similarly,
the ellipse in Fig, 8 that corresponds to t = 1.6 is identical, except
in size, to those at t= .6 and at t = 2.8. Thus, the period with which
the ellipses repeat corresponds to the period of the transient oscilla-
tion in f*(t). The above are experimental conclusions., They are
buttressed by the theoretical fact that, for a second-_'order, linear,
time-invariant system with poles of the form s = a = jw (w # 0), the
period with which the ellipses repeat is half the period of the natural
oscillations of the system.,

This correlation between the two periods suggests that we study
the relation between the evolution of the ellipses and f*(t) even more
closely. Unfortunately, this will require a great deal of additional
computer programming, For the moment, we content ourselves with
the following conjecture. The optimal control, f*(t) attempts to per-
form two operations simultaneously. The first is to improve its infor-
mation by shaping the e'llipse and thereby increasing the correlation
between the measured variable and the unknown variable. The sec'ond,
and probably most important, is to drive the state in a direction that

minimizes the cost.
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So far, our analysis has been concentrated on the initial
transient, In Chapter IV we develop the tools needed to examine the
"steady state' more closely.

We will discuss the performance ? obtained for this example
at the conclusion of the third example.

Example 3:

This example is identical to the previous example with the

single exception that:
c =10 1] (3.3.12)

Otherwise, the parameters ‘are identical to those of Egs. (3.3.9) and
(3.3.10). Thus, the difference is that we now feed back the velocity
rather than the position,

The open-loop system is aga_in both controllaBle and observable

and has transfer function:

yis) = __st2 (3.3.13)
u(s) s?4 25 + 10
It, therefore, has poles at s = -1%£ V3 and a zero at s = -2 and is

stable.
The optimal transition matrix for this problem is plotted in
Fig. 9 and the optimal feedback gain in Fig. 10, These graphs have
two striking features:
1) The frequency of the oscillations in f*(t) is twice the
frequency of the oscillations of g*(t, 1:0).
2) The initial transient in f*(t), if it is a transient, lasts

for nearly the entire time interval.
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-1.8 =

Fig, 9 '"Optimal" Trajectories for Example 3
Plotted in the Phase Plane
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Fig. 10 Optimal Feedback Gain for Example 3



44
We believe that the first of these features is explained, as it was for
the previous example, by the repetition frequency of the ellipses on
which the state is distributed. The second feature must be due to the
only change between this example and its predecessor, the change in
the C matrix. Why the change from position to velocity feedback
should produce this particular change in f*(t) is not yet understood,

One expects velocity feedback to perform better than position
feedback for this system. This is borne out by the following data for
the system (3. 3.1), criterion (3. 3. 2) and parameters

0 1 0 10 0

A= B = Q= (3.3.14)
-10 -2 1 0 10

These parameters correspond to examples 2 and 3.
5
We compare four alternative feedback controls,

1) Let fl(t) = 0, The performance of the control can always

A
be written as J = tr[_lgf]. In this case,

28.5 .5
K, = (3. 3. 15)

2) Let C= [1 O]. This yields pure position feedback and
corresponds to example 2, Then, fz(t) = f*(t) as shown in Fig, 6. The

performance is given by tr[EfZ] where :

21.8 .39
K, = (3.3. 16)
.39 3. 95
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3) Let C=]0 1]. This yields pure velocity feedback and

corresponds to example 3. Then f_(t) = f*(t) as shown in Fig, 10,
3 g

And,
20.6 .5
K, = (3.3.17)
.5 1.88
4) Let C=1. Let the feedback gain matrix be the Kalman
optimal F¥(t). Then,

20,6 . 49
K = (3.3.18)
.49 1.87

Studying these performances leads to two observations:

a) The optimal velocity feedback control, f3(1:), performs
essentially as well as the best possible feedback control, the Kalman
cptimal control. Both of these controls are, in terms of ?, approxi-
mately 30%better than f(t) = O,

b) The optimal position feedback control, fz(t), is about 16%
better than f(t) = 0 in terms of ./T\ However, for some initial condi-

tions (e.g. Xy = [O l]) fz(t) is actually worse than £(t) = O,

A
The second observation is explained by the fact that J is an

""average' performance measure and fz(t) minimizes the "average'"
performance. The first observation partly justifies this research by
demonstrating that excellent control laws are possible using only out-

put feedback.



CHAPTER IV

OPTIMAL TIME-INVARIANT OUTPUT-FEEDBACK PROBLEMS

For many practical purposes one wants the matrix of feedback
gains to be constant. In addition, the discovery of the conditions under
which the optimal feedback .gains are time-invariant is one of the im-
portant theoretical questions in optimal control theory. If one reasons
by analogy to the standard linear regulator problem, one might conjec-
ture that the bptimal feedback matrix _IE"_*(t) found in Chapter II is
time-invariant under the added hypothesis that T, the terminal time,
tends to oo and that A, B, C; Q and R are constant, In the first sec-
tion of this chapter we offer evidence that suggests this conjecture is
false, at least in general, R

After this, we assume that E‘_* is constant and derive the
steady state optimal regulator solution by assuming that C=1. We
then drop the hypothesis that C is invertible and derive the equivalent
resuit to that of Chapter II, for E‘_Jﬁ time-invariant, We conclude the

chapter with several examples.

4,1 The Limiting Case, T — o

The first problem we wish to discuss is the problem of Chapter
IT formulated as the exact analog of the Kalman linear regulator on the

semi-infinite interval. Thus,

8(t,ty) = [A-BEMC]a(L t) 5 &t ty) =1 (4.1.1)

-46-
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(0.0]

f tr[2'(t, 1) {Q +C'F (R E(t)C)alt, to)dt (4.1.2)

where A, B, C, Q and R are constant real matrices of appropriate
dimensions and properties (see Section 2, 2).

The problem is to find a measurable _F_*(t) which minimizes
the performance criterion (4.1, 2) subject to the constraint imposed by
the system equation (4.1.1), assuming such an.}i*(t) exists, In addi-
tion, one would like to find conditions on A, _P_:, _C_, Q and R which will
guarantee the existence of an optimal __lf‘_*(t).

We were unable to solve this problem. We can, however, give
some indication of the difficulties involved in its solution by discussing
some of our attempts to solve it, One approach that we tried was to

5
attempt to find f‘_*(t) as the limit, as T — oo, of the solutions of finite
time problems. In particular, those finite time problems which were
solved in Chapter II, It is well known that this approach works quite
nicely in the case of full state feedback (__(2“1 exists). Unfortunately,
when C is not invertible the solution of the finite time problems in-
volves a two point boundary value problem,., We found the technical
difficulties in extending these two point boundary value problems to the
semi-infinite interval insurmountable,

Another approach that was attempted is basically a version of
the inverse problem of the calculus of variations, That is, given the
problem described b‘y Eqgs. (4.1.1) and (4. 1. 2), assume an _F_‘_*(t) and
try to find conditions on A, B, C, Q and R which will guarantee that

F¥(t) is optimal. Specifically, this approach was taken assuming
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E’k(t) = constant and when that failed, assuming E_*(t) was periodic.
No useful results were obtained for E*(t) assumed periodic,

In connection with the possibility that Z_F_*(t) might be time-
invariant, the following result is useful,

We can prove that there exist cases where the optimal control
F*(t) for the problem described by Egs. (4.1.1) and (4.1, 2) must be
time-varying by citing the following counter-example (due to Brockett
and Lee, [16]). Given the time-invariant linear system:

0 11 [o

3(t, 0) = - l#w[-4 3]}8t0) ; 30,00=1 (4.1.3)
-2 2] [

or, equivalently, in terms of the transforms:

u§§’s = =t ’ (4.1.4)
s” =28 + 2

a) There exists no constant real f which stabilizes
this system.

b) There exists a stabilizing f(t) given by:

0 OEt-nT<T1
f(t) = for n=0,1,2,... (4.1.5)
1 T1_<_t-nT<T
-1 -1
letan 3 T=tan 3 4+ 7w

Therefore, for the system (4,1, 3) and any reasonable performance
measure of the form of Eq. (4.1.2), the optimal output feedback con-
trol cannot be time-invariant,

The above example leads one to the belief that the conditions

under which _If(t) —*Em as T — oo are very complex, especially since
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the system (4. 1. 3) is both controllable and observable. Rather than
belabor a problem we have not been able to solve or bore the reader
with our own intuition, we reformulate the problem in the following
section and demand that E* be constant, As we shall see, there is a
real possibility that this approach will lead back to answers to the

problem in this section,

4,2 Reformulation of the Problem

We will consider the following optimization problem:

Given the time-invariant linear system:
#(t,0) = [A-BFC]3(t,0) ; #0,0)=1 (4.2.1)

It is well known that:

#(t,0) = o[£ BEC]E (4.2.2)

Given also the performance criterion:

Q0

-1 u[sco@+c'ERECIE, 0)]at (4.2.3)

0

Find that E_* which minimizes the performance criterion (4, 2, 3) sub-

ject to the constraint imposed by the system (4.2. 1).

For the sake of completeness,

is an nxn real constant matrix

[

|

is an nxm real constant matrix

is an rxn real constant matrix of rank r

¢!

o

is an nxn symmetric positive semi-definite real
constant matrix

|

is an mxm symmetric positive definite real con-
stant matrix

{1

is an mxr real constant matrix
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4.3 Solution Assuming C =1

In the case that C = I we have the Kalman time-invariant
linear regulator problem. The solution to this problem is well known
and we shall, in fact, simply re-derive the conditions which _I::_*, the
optimal control, must satisfy. The derivation will proceed formally
at first and then we will state and prove a theorem which guarantees
the validity of all the prior assumptions. A similar derivation was
given by Luenberger [17]. We remark that we develop the tools in
this section v}hich we will use in the following section whefe C is not
invertible.

We begin by using Eq. (4. 2.2) to rewrite the performance
criterion, Eq. (4.2.3), as

[A-BF]'t

ff(g_):%trf e~ ~ ' (Q+F'RF)e
0

A-BPIt
[£-BE] dt (4.3.1)

It should be noted that J(F) in Eq. (4.3.1) is a reai function of mxr
variables (the fij)’ A necessary condition for F>:< to minimize such a
A —

function is that a(?’-F{ = 0. We shall simply calculate and evaluate

F*
the necessary derivative,
A key lemma in this ca,lculra,tion is the following, due to Klein-

man [15].

Lemma - Let {(X) be a trace function. Then if we can write
(X +eAX) - £(X) = etr[ M(X)AX] (4.3,2)

as € — 0, where M(X) is an nxr matrix, X is an rxn matrix, we
have

8 £(X)
X

= M'(X) (4.3.3)
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For completeness, a trace function is defined by:
Definition - £(-) is a trace function of the matrix X if {(X) is
of the form
f(X) = tr[E(z)] (4.3.4)
where F(*) is a continuously differentiable mapping from the space of

rxn matrices into the space of nxn matrices,

_Z_Examgle -
(A+BX)t
Let F(X) = e (4. 3.5)
then,

(A+BX+eBAX)t
F(X+eAX) = e (4. 3. 6)

But, from p. 171, reference [18] we have that (4, 3. 6) is, to first

order in ¢,

(A+BX)t b (a+BX)(t-0) (A+BX)r
F(X+eAX)=e +€f e BAXe = dr
0
(4.3.7)
Hence,
b (A+BX)(t-0) (A+BX)r
L(AX) :f e BAX e dr (4.3.8)

0

and so, since the trace operation commutes with integration, we

obtain
* (A+BX) (A+BX)(t-o)
tr[£(é_}_(_)] = tr f e e do- BAX
_O
{(4.3.9)
[ (A+BX)t
=trie B (AX) (4.3.10)
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Therefore,

5 (A+BX)t] |, [A+BX]'t
ﬁtr e =Be ‘ (4.3.11)

Now, with the lemma and the example for guidance, we proceed

with the derivation. We begin by defining the convenience

éo Jay A-BF (4.3.12)
Then,
N L [P [a%-eBARTE [A’+eBAF]t
J(E+eAF)=5tr e (Q+[Et+teAF |R[EF+eAE ] e dt

0
(4. 3.13)

Using Eq. (4.3.7) from the example, we obtain the following equation,

accurate to first order in¢g,

N A e A% A% A% AT
fErar)-ter [ & (QIE'RE)E +eé (AE'RE)S +eé (E'RAF)S
0,
i Ao (t-o) 11 éO’U 1 _éot
-€ fe AF Be do | (Q+F RF)e
0
_éo't I t _éo(t—o-) éoo_
-ce (Q+F RF) fe BAFe do} pdt (4. 3. 14)
0
Therefore,
A Ay (O] e P A Ao
J(_E:'*'E_A_E)'J(E):‘Zf ctri2e e EB__E-I e e (QtF RF)e BAFds
0 0
t ,0 ot o

-f e € (QtFRF)é BAFdr | dt (4.3.15)
0
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Thus, using the lemma,

83\ 0 éot _éo't ) oo t ’ _é_o'(t-o‘) ’ éot _A_O'(r
-5']?=f REe e dt-zf f_lie (Q+FE'RF)e” e doadt
~ 0 0 0
. co t ,éo'o‘ ' éot _A_O'(t—g)
"zf f_l’:e (Q+tE RE)e e do dt (4.3.16)
0 O

This is, of course, an answer, However, some manipulation is neces-~
sary before it can be used. Fortunately, this manipulation is possible,

We begin by defining

A oo t ,_l}_o'o‘ ' éot _A_o'(t-cr)
r = f f_]ée (Q+F RF)e e do dt (4.3.17)
0 0

Let o= t—o‘l
Then, do = -dcr1 (t is constant)

Note that at o

1
L

0'1=t

0

1
Aa
q

t

at o

With the above substitution,
o .0 1 _é0|(t"0—1) N éot _éOIO‘l
L= 'f fﬁe (Q*ERF)e e deydt  (4.3.18)
0 t

Substituting Eq. (4. 3.18) into Eq. (4. 3.16) we obtain,

a_/I\ 00 _éot éo't oo t .___0'(1:-0') ‘ _ﬁ:o,c _éo.g_
=f RFe e dt—f f_]?_ e (Q+F RF)e e do dt
0

(4.3.19)

Assuming that the required integrals exist, the next step is to inter-

change the order of integration. We begin this by defining :
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oo t '_éo'(t_g) 1 ‘_éot -éor(r
X:f f Be (QtF RF)e e do dt (4. 3.20)
0 o0
Interchanging the order of integration:
o) A%t A
X:f f Be (QtF RF)e e dtde (4.3.21)

Let T=t-o

Then, dt = dt (c is constant)

Note that at t=0, T=0
at t= oo, T= @
With the above substitutions,
0o o0 ' éo"r ' _éo-r _éoo- éono_
X = f f Be (Q+F RF)e e e dr do (4. 3.22)
0 0
or,
00 ' _éo'-r y éo-r 0 _éoo_ _éo'o'
X = f Be (Q+F RF)e d'rf e e do (4. 3.23)
0 0

Substituting Eq. (4. 3.23) into Eq. (4. 3.19) we obtain:

a.l)'\ (o) éoo_ _éo'o- . 00 éo:_‘_ ' _éo'r o éoo_ é_oso_
é—f=§£f e e de - B f e (Q+F RF)e d-rf e e do
- 0 0 0
(4. 3. 24)
A
Setting —g% . = 0, we obtain
=|F*
o BE 1 &
e -1 [é-.—.E ] t % £ [é-EE ]t
F*=R'B'[ e (Q+E 'RE)e at
0

(4. 3.25)
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Define:

. [ [ABETt ., [A-BE']t
K’ :f e (9_*_5» RF")e Cdt (4. 3. 26)
0
Equations (4. 3.25) and (4. 3. 26) are fairly close to the solution
of the problem, assuming that the required integral exists. The fol-
lowing theorem guarantees existence and uniqueness under the assump-
tions that are well known to be necessary,

Theorem 4.1 Given the linear time-invariant system (4.2, 1)

and the performance criterion (4. 2. 3) and

a) the matrix [E, AE,éZE_, oo ,én_l

(controllability’)

_]é_] is of rank n

l)n-

7

b) the matrix [H',A'H',....,(a")" 'H'] is of rank n,

where Q = E'_I:I_; (observability
then the constant matrix _E* which minimizes the cost functional
(4.2.3) is given by

- 5-1215* (4.3.27)

and _IS* is the unique positive definite solution of either Egs. (4. 3. 26)

and (4. 3. 25) or, equivalently, of Eq. (4. 3.28) below:

‘a+A'K"+Q-K'BR BK' (4.3.28)

M.

0=K

Proof: Since the system (4.2.1) is controllable, there exists

a positive definite symmetric nxn matrix _I:_(_O such that

~1_1
F, =R BK, (4.3.29)

stabilizes the system (4.2.1). Thus, by Theorem 4, p, 231, of

reference [ 18], the equation
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' -1
0=K ,[A-BEC]+[A-BF C] K, +Q+K;BR "BK, (4.3.29)
possesses the unique solution:
Q0 1
K :f e[fx_-ggo] ’ 0+K BRIB' ]e[é-ggo]tdt (4. 3. 30)
"""l [-—— -—-0———_ — _.0 » e

Furthermore, —ISI is positive definite by the assumption of observability.
We complete the proof of the theorem, in essence, by the follow-
ing lemma,

Lemma 4.1

Let F_ = RrRIB'K (4. 3. 31)
~n = < =n
and let E—n +1 be the unique positive definite solution matrix of
_ ' -1
0=K 4[A-BE C]+[A-BE C]K ,;+tQ+K BR "BK  (4.3.32)
then,
a) §n+1 exists provided that [é—_}_B__F_O] is a stable matrix

b Koy < K,

Proof:

a) The proof is by induction. Assume that the matrix

A-B Fn-l] is stable. Then K exists, is unique

i s

and positive definite,

Define the Liapunov function

v () = x (t) K x(t) > 0 forallt (4. 3.33)

vo(t) = x (O [(A-BE,)'K +K (A-BF )] x(t) (4.3.34)
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Let
A |
vV, = [A-BE K +K [A-BF ] (4.3.35)

B'K -F . B'K +K BF_-K BF
— =n ~n-1=-n ~n—-—n-1 =n~=n-1
(4. 3. 36)

2K BR IB'K
—n—= = -—n

t 1 t
n-1] BgtK[A-BE [ +E, | BE +K BF |

_H’
>
| o
| =1

(4.3.37)

Using Eq. (4.3.32) and Eq. (4.3.31)
BRI!B'K +K .BRI!B'K +k BRIB'K -2k BRI!B'K
—— = —n-l—-~-~ —-=-n-—-—m—~-— ~—+-n-1 —n—— —-—n
(4. 3. 38)

_ -1t -]t
=-Q-K BR 'BK -(K -K )BR "B(K ,-K) (4.3.39)

Therefore Xn < 0 and \.fn(t) <0 f{forallt (4.3.40)

Therefore, [A-BF ;] is stable implies [A-BF ]
is stable so that __]':Sn_!_1 exists and (a) is proven by

induction from EO‘

b) The proof that -I-<-n+1< En is obtained as follows:

(4. 3. 41)

or,

-1t -1 1 1
0=[EK 1"K,J[A-BR "BK J+[A-BR "BK [ [K  -K ]

-[EL K 1]25-15[.@‘3“'51,,_1] (4.3.42)

L—~n —n-
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This equation has a unique negative definite solution for [_I_(_n e _I_i_n]
Thus, En—i—l < En'

By the lemma just proven, the sequence of matrices {En} is
a monotone decreasing sequence of positive definite matrices., Such a
sequence must converge to a positive definite limit _IS*. This _IS* must
be a solution of Eq. (4. 3.28) or, equivalently, of Eqs. (4. 3.25) and
(4.3.26). Uniqueness follows from a straightforward algebraic manip-
ulation which may be found on p. 77, reference [11].

This completes the proof of the theorem. And, the theorem
guarantees the existence of the integrals (4. 3. 20) and (4. 3, 21), there-

by completing the derivation of the solution to the Kalman linear

regulator problem,

4,4 The Main Result

In this section we relax the aséumption that C =1 to the
assumption that C is a real rxn constant matrix of rank r (r < n),
Thus, the results we obtain will apply exactly to the problem stated in
Section 4, 2. The results we actually obtain are somewhat more compli~
cated than those of the previous section. However, the derivations and
the structure of the solutions are quite similar., We remark that the
existence of a constant F which stabilizes the system (4,2.1) is as-
sumed throughout this section, If such an ¥ does not exist, then 9
is infinite for all allowable controls and our problem is meaningless,

We begin by using Eq. (4. 2.2) to rewrite the performance cri-

terion, Eq. (4.2.3), as

3\(1?_):%1:1' f e (Q+

0 (4. 4. 1)
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Guided by our experience in the previous section, we will again calcu-
Iy

late g; by application of the 1ernma and example of the previous sec-

tion, Again, we define the convenience,

A° a [A-BEC] (4.4.2)
Then,
[A%- EBAFC]t [A%-€B AFC]t
(F+€AF)———tr f [Q+C'(F+eAF )R(F+eAF)Cle dt
0
(4.4.3)

Using the example, it is easy to show that, to first order in €,
[A-€BAFC]t &% Ao NG
e f AFCe do (4. 4. 4)
0

Applying Eq. (4.4.4) to Eq. (4. 4. 3) we obtain, accurate to first order

in €,

A
J(E+eAF)=

AC%
-e6 (QICF RFC) fe BAFCe do|$ dt (4.4.5)
0



-60-

Then, to first order ing€ ,

Al-s) 2% L5
- f Ce e (Q+tC F RFC)e Bdr AF|dt (4.4.6)
0

33\ 00 éot _éolt ' . oo t ,Ao'(t—o-) o _ot _f}_oltr
-8—F:f RFCe e _C..dt'ff fg e (QtCF RFCle e Cdodt
0 0 o0

1 ' .‘A.‘_O'o— ot éot A (t-o) '
) f f Be (Q+ EBF_E)C e C dodt (4.4.7)
0 0

This is nicely parallel to Eq. (4. 3. 16) and it is obvious that the identi-

cal substitutions will produce similar results. Thus,
A ' fk_o'o_ Pt éot éo'(t-o_ '
Let T = f f Be (Q+tC F RFCle e C dodt (4.4.8)

Let Ty = t-o

Then, do = —do'l (t constant)

Note that at o = 0, oy = t

i}

at o = t, 0‘1=0
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With the above substitutions,

> N A%t v
= f f Be (QtC F RFCle e do dt (4.4.9)
0 0

Therefore,
a? _éo't | oo _t 'éo'(t-cr) L éotéo'(r'
3F ° f e _C_Jdt-f f Be (QtCF RFCle e Cdodt
— 0 0 0
(4.4.10)

Let

A A (t-o) 1t éot .éo'o- 1

= f f E e (QtCF RFCle e C dodt (4.4.11)

0 0

Interchanging the order of integration, assuming the required integrals

exist,

VA e) At A%
X:f f Be (QtC F REC)e e Cdtds (4.4.12)
0 T

Let T =t-0

Then, drt = dt

Note thatat t= o, 7= 0

)]

at t= 00, T= 0

With the above substitutions,

® Kr (P A X
X:f B'e” (Q+C'F'RFCle de e e Cldr (4.4.13)
0 0
N
Substituting Eq. (4.4.13) into Eq. (4.4. 10) and setting —g—% = 0,
— F*

we obtain,



(4. 4, 14)

where

A" = [A-BF'C] (4. 4. 15)

For some applications the form of Eq. (4. 4. 14) may be the
most useful. However, we can obtain another form that is quite inter-
esting by defining:

%

o
o 5%

5
*® é T 1 ] O _-é_ T
fe [QtCE RFE Cle dr (4. 4.16)
0

>

1

% %
®© fx_ o _1_3;_ o
f e e do (4.4.17)
0

>

)

Assuming that a 5*, _E* and E* exist such that _1}_*, as defined
in Eq. (4.4.15), is stable; assuming 5* and __li* are solutions of
3k £ 5k
Eqs. (4.4.14), (4.4.16) and (4.4.17); then K, L. and F are also

solutions of the following algebraic equations:

0=K[A-BF'C]+[A-BF C]'K '+0+C'F RE"C (4.4.18)
0=L'[a-BF*C] +[A-BF CIL*+1 (4.4.19)
% 1otk %t E R e |

F =R BKLC[CLC] (4. 4.20)

Note that Eq. (4. 4. 20) can be used to eliminate E* from the other two
equations. Furthermore, the existence of _C_J_'l reduces the above equa-

tions to the single equation of the previous section, Eq. (4. 3.28).
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We remark that it is entirely possible that the above algebraic
equations have solutions that are not also solutions of the integral
equations, Eqs. (4.4.14), (4.4.16) and (4.4.17). Furthermore, these
are only necessary conditions for a solution, These two caveats will
be clarified somewhat by the following lemma which also provides an
algorithm for computing _I‘_’_*o

Lemma 4, 2

-1 1 -1
Let B =R "BK L C[CL C]

~n-1 = —~-—n-l-n-1l1-—-l—=n-1-=

(4.4.21)
where _I_{_n is the solution of:

1 1!
0=K,[A-BF, \C]+[A-BF, CIK +Q+C'F RF |G

- = =<n-1—=-n-1-—
(4.4.22)
and En—l is the solution of :
H
o0=L [A-BF ,C] +[A-BE ,CJL _,+1 (4.4.23)

a) Then, assumihg Q>0 and [é-EEn-l—C—] stable, a

unique and positive definite —K-n exists,

b) Furthermore, assuming there exists a positive defi-

nite L _4 which satisfies Eq. (4.4.23), then
tr[{(_n] itr[i(_n_ 1] (4.4.24)

a) Existence and uniqueness of _Ign is a direct consequence of
Theorem 4, p. 231, of reference [18]. Positive definiteness was
established for an identical equation, Eqgs. (4. 3.29) and (4. 3. 30), in

the previous section.
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A
b) Let K -K = 6K (4. 4. 25)
—n —n-1 —n

We next attempt to compute GEn.

0=K [A-BE |\ CJ+[A-BE__C]'K_ -CF _1§£ 18 SZE oRELC
_-Iﬁn-l[é Fn 2—] [é‘- —E-En 2—— —Isn—l (4. 4. 26)
! 1
0= 6§n[é _1._]'1'[_‘.6‘_ EE .9] ﬁﬁn-_C_I_ F -155 _1_C_+9_ F _ZREn 2.9_

1 1 1
+£<—n- IEEn-Z—g——I-{—n- 113— -F—n— l_C_+_§__ En-Z—E—’ -Ig-n- 1 -C En- l—B- -Isn— 1

(4.4.27)

Adding and subtracting K 113._13- lglﬁn_l and forming perfect squares

in exactly the same manner as in the proof of Lemma 3.1, we obtain

1 1 -1 :
0=8K [A-BF _,C]+[A-BF ,C]éK +HCF ,-K ,BRTRE ,C-R EKn_

-[C'F. K, ,BR|R[F__,C-R"'BK, ] (4. 4. 28)
Define
ln = [———n-Z = _ZBR ]B_F_‘. - EE Eﬁn 2]
- [C'E, 1K, ,BRIR[E, |C-RTBK, ,] (4.4.29)
Then,

[A-BE__,C]t [A-B St
6K :f e 1€ I e Ea-1€l (4. 4. 30)
—1) Lt 8
0
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[é_-—B— —n- ]_-—-] t [é E ]t
tr[é_ISn] :f tr|e _ne' dt (4.4.31)
0
(e 0]
A-BF_ .,C]t [A-BF t
= tr| I f e[ BE, 8 L "BEnE] dt | (4.4.32)
0
tr[6K ] = tr[I L ] (4. 4. 33)

Since kn-l is assumed to be positive definite, it can be factored
uniquely into

3 8 =L (4.4.34)

Therefore,

tr[6K_] = tr[8 (4. 4. 35)

—n-1 —ngn 1]

Equation (4. 4. 35) is identical in form to Eq. (3.1.17). Thus, applica-
tion of the proof in Chapter III which follows Eq. (3.1.17) demonstrates
that

tr[8K_]< 0 (4. 4. 36)

which completes the proof.

If one can find a stabilizing initial guess for the feedback gain
matrix then the above lemma can be used in a computer algorithm that
is essentially similar to the one used in Chapter III, Again, conver-
gence is not guaranteed but is likely for well-behaved systems. It is
conjectured that the solutions of the necessary conditions are not unique,

Furthermore, it is conjectured that convergence will not occur unless
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the initial guess is '"close enough' to optimality. This conjecture is
based on two facts:

1) The algorithm is basically Newton's method and this type
of behavior is characteristic of Newton's method.

2) The Liyapunov argument of the previous section, when it is
applied to this problem, shows that stability of [é—_]?if‘_ng] and exis-
tence of F does not guarantee stability of [é_§£n+lg] unless

—n+l

”E—n-H-—F—‘n“ is "small enough'.,

4.5 Examgles

We have worked two examples that are of some theoretical
interest, They are included below.
Example 1:

a) The system is described by
X+fx+x =0 (4.5.1)

where f is the feedback gain and x is a scalar function of time.

This system is identical to:

#(t,0) = [A-BfC]&(t,0) 8(0,0) =1 (4.5.2)
0 1 0
with A = B = c=[0 1]
-1 0 1

The system is controllable and observable, The performance criterion

is given by

Qo
T .;.f tr{g'(‘c,O)[Q+C'f2C}@(t,O) dt (4. 5.3)
0



with Q=

The solution, as the reader can verify by substituting into Egs. (4. 4. 18)-

(4. 4.20) is :

£ =273 (4.5.4)

minimizes the performance criterion (4.5. 3) constrained by Eq. (4.5.2).

b) It can be shown, by direct substitution, that

0 joo)
A ] »
T=3 f (P +2%% ) dt s f (2 +£%5%)at (4.5.5)
0 x(0)=0 x(0)=1
x(0)=1 x(0)=0
The f which minimizes Eq. (4.5.5) subject to the constraint imposed
by Eq. (4.5.1) can be computed by a procedure suggested by Brockett,

We include the calculations to demonstrate the method,

Multiplying Eq. (4.5.1) by x, we obtain

§§<+f5c2+x;<

= Q (4. 5.6)
Integrating from 0 to oo, we obtain
o)
f (% + £%° + xX)dt = 0 (4.5.7)
0
Therefore,
fo's) 00
o2 1 2, 2
f xdt=-—T—[(x + x7) ] (4. 5. 8)
0 0
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Multiplying Eq. (4.5.1) by (x+fx), we obtain,

(x+fx)(x+fx)+(x+fx)x= 0 (4.5.9)

Integrating from 0 to co, we see that

(¢ o] o0
f (:'c+fx)(§+f§c)dt+f x;cdt+f fx%dt = 0 (4.5.10)
0 0 0
Thus,
QO QO
f xZdt = -%[;&HX)Z + x°] (4.5.11)
0 - 0
Therefore,
(¢ 0] 100}
—é— f (x2 +f2>'<2)dt = - zlf [§c+fx)2+x2+ £2 %% +f2:'<2] (4.5.12)
0 0

We assume (as is the case) that the minimizing f produces a stable
system so that x(w) = x(o0) = 0,

Thus, if x(0) = 1, %(0) = 0 then

(6 0]
1 f (x% + £25%)at = L (1 + £2) (4.5.13)
2 X3
0

And, if x%(0) = 0, %(0) = 1 then

1

N\

QO
f (x° + £25%)at = - (1 + 2£%) (4. 5. 14)
0

Substituting these results into Eq. (4. 5.15), we obtain a specific func-

A
tion for J that is,



(4.5.15)

Differentiating this expression, setting the derivative equal to zero
and recognizing that we must choose that f for which the resulting

system is stable gives

£ = V273 (4.5.16)

There is a third technique which could be used to solve this
example., One could compute the Laplace transforms of x and x for
the two sets of initial data. Then, Parseval's theorem can be used to
obtain an expression for ./I\ in terms of an integral of these Laplace
transforms. The integral tables in Appendix F of Newton, Gould and
Kaiserz‘2 can be used to evaluate this integral directly. One thus
arrives at Eq. (4.5.15) and proceeds from there,

Example 2:

This example is identical to Example 4 of Chapter III except
that T = o and E* is constant by hypothesis. The parameters are:

0 1 0

A= B - c=[0 1] g@=10, R=1
-10 -2 1

The solution, obtained by substituting into Eqs. (4.4. 18)-(4.4.20) and .

solving is:

£ = 1.7 (4.5.17)

Two reasonable conjectures about the relation between the con-
stant _F_* of this chapter and the time-varying _I':*(t) of Chapter III,
when they are calculated for identical systems and for cost criteria

whose only difference is in whether T is infinite or not, are:
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1) _F_‘_* = the "average" value of _F_‘_*(t) computed for

T large.

2) _]3_‘_* = the "'steady-state' value of g‘_*(t) computed
for T large. By 'steady-state'' we mean a con-
stant value of __F_‘*(t) maintained for a time interval
between the two terminal transients, if such a

constant value exists,
It should be noted that the above example and Example 4 in Chapter III

support either hypothesis although the first conjecture is supported

more strongly.



CHAPTER YV

CONCLUSIONS

In the previous chapters we have studied two very closely re-
lated output feedback problems. For the first of these problems, the
linear output feedback control of a linear system with respect to a
quadratic criterion for a finite interval, we found conditions which the
optimal control must satisfy. In addition, we derived and programmed
a computer algorithm which can be used to compute this optimal con-
trol. The second problem, treated in Chapter IV, is identical to the
first except that the system is assumed time-invariant as well as lin-
ear, the interval is semi-infinite and we demand that the feedback
matrix be time-invariant. Necessary conditions that the solution to
this problem must satisfy are found. In addition, a number of exam-
ples of both types are included.

We believe that these results are quite interesting, both theo-
retically and practically. From a practical viewpoint, one can use
these results for two purposes :

1) To design linear feedback controls, especially when

the state vector has many more components than the

output vector,

2) To study the cost-effectiveness of changing the
measurements in a linear system. In other words,
one can solve the problems discussed in this thesis
for several different candidates for C, compare
the cost of buying each C with the performance

obtained by it, and choose the best one.

-71-
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Both of these applications have been illustrated in the examples includ-
ed in the previous chapters,

From a theoretical viewpoint, we believe these results repre-
sent a contribution to quadratic optimization problems for linear sys-
tems. In addition, these results will help span the gap between classi-
cal control theory and modern control theory.

We believe that there are many potentially useful extensions of
this research. For example, in the classical design of feedback con-
trols it is well known that dynamical compensation is often useful,
Thus, it would probably be useful to extend our results so that they
might be used to calculate '"optimal'" compensators. ‘ Another interest-
ing question is how does additive noise in the output vector y(t) affect
our results, We have briefly studied still another possible extension
of these results in Chapter IV. That is the inverse problem; When
is a linear system optimal with respect to the performance criteria

used in this thesis 9



APPENDIX A

ON THE PSEUDO-INVERSE OF A MATRIX!?

The purpose of this appendix is to develop those properties of
the pseudo-inverse of a matrix that are relevant to our research,
Since our concern is with matrices we restrict ourselves to the con-
sideration of linear transformations (matrices) mapping a finite dimen-
sional vector space into a finite dimensional vector space. All of
these vector spaces are defined on the complex field C although all our
results are equally true for vector spaces on the real field, We have
closely followed reference 19, Zadeh and Desoer, in this appendix,

With the above comments in mind, we make the following defi-

nitions

Let X be an m-dimensional linear vector space defined on 64
y be an n-dimensional linear vector space defined on 4

A be an arbitrary nxm matrix of complex numbers

Definition A, 1 - The range of a matrix A is the set %4/ (A) de-

fined by:
R(a) = {X'Eg/lX:é?_‘ for some x e X} (A. 1)

Definition A, 2 - The null space of a matrix A is the setfz (A)

defined by:
77(a) = {xeX |Ax = 0} (A.2)

That is, 7Z (A) is the set of all vectors of X that A maps into the zero

vector of ? .

-73-
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Definition A, 3 - A subspace’ﬁ of a finite dimensional vector

space X is a set of vectors of & ® such that if x and y are in@ ,

then for all complex numbers o and B, ax + By e/ .

Definition A, 4 - Let 777 and 72 be two subspaces of a vector

space j( . j( is said to be the direct sum of ?] and W , written
7? @7{ = J{ , if any x € 7( may be written in one and only one way

as 5=x+5wherexfﬁi and_zie7/ .

Definition A.5 - Let A be an nxm matrix, The adjoint matrix

fx_' of A is a matrix such that

<AX’X>:<§’é'X> forall _)SECn, _X€em (A'3)

Definition A.6 - Let 7& be a subspace of ¢ ., The orthogonal

complement of , denoted b 1 , is the set of all vectors of n
Yy

that are orthogonal to all vectors of 7)] .
Theorem A,1 - Let A be a matrix in e %, then

nC "=H# 2)® 7 (A" (A.4)

11 ?7 (é') is the orthogonal complement of @ (A) (A.5)
ie. (a) =R @t (A.6)

Proof:
Let ye Q (_ji_;)'L (see Definition A, 6)
Since _.ﬂ_&_(_AiX) € 4 (A) and since y ¢ ﬁ (i’-\_)l, we have
f t ! ' 2
0=<y,AMAy)>=<Ay,Ay>=|layl|l®=0
Therefore, é'l =0 and ye W (_é')

Thus, we have proved that y ¢ W (A) J‘:;,_y: € ? (ﬁ\_l) (A.7)

Let ze® (A)

then, for all x, 0 = <é’_z_,§> =<z,Ax>
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that is, z is orthogonal to all vectors in ﬁ (_é).

Thus, we have proved z ¢ ?7 (é') >z Eﬂ (_é)‘L

Therefore, (II) is proven and 77 (_é') :ﬂ (_A:)'L

(A. 8)
(I) follows from the fact that & ® = & (é)@ ﬁ (_é_)'l‘

Definition A, 7 - Let A be an nxm matrix mapping cm-Cn

The pseudo-inverse of A is denoted by _éf and satisfies the conditions:

(1) éTAx = x forall xe ?7 (é)l = @ (é') (A.9)
z2=0 forallzel Ay = 7 (A") (A. 10)
) Afyrz) = afy+a¥s forann ye £ (a) zed ()t (a1

Corollary A, 1 -
Rial) = R 1) ?Z(A)‘L (A.12)
7) (a') =7/ A =4 (_é)"‘ (A.13)

n

Theorem A.2 -

(1) éf_z_{_ is the orthogonal projection of C ™ onto ﬁ (é') = ? (é)l (A, 14)
+

(I1) (é‘)Jr = A (A. 15)
) Afaal = af (A. 16)
(v) aata = A (A.17)

(V) AA1~ is the orthogonal projection of C D onto (A) (A')'L(A. 18)
848 g L2 4

Proof:
of (I):
Let x be an arbitrary vector in C n

Consider the orthogonal decomposition x = x, + x, where
1
x €7 A7 % 67/ (A) (A.19)

by the definition of x, above (A. 20)

2
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But éTézc_l = x, from Definition A.7, Part I (Eq. A.9)

X1 |
(A.21)
This proves (I)
of (1I):
R(at1h =2 aht =2 @) (a. 22)
¥ .1 by Corollary A. 1
nqahh -4 @ah” =7 @ (A.23)

Next, we verify that A satisfies the conditions I-III of

Definition A. 7 for (éj)Jr

a) Let x 67/ ahyt =ﬁ(_é) by (A. 22) (A. 24)
then x = Ay for _X€? (_é_)'L (A. 25)
Therefore _./_&_./gé = _j_i__éT_é_X = Ay from Eq. A.9 (A.26)
But Ay = x and condition I is verified

b) Let ge@(éT)'L:? (A)

then Az = 0 by the line above, thus verifying

Condition II (A.27)

c) Condition III is trivially satisfied by A.

of (III):
n . N
Let .X_fc and y = ¥ +-ZZ with ¥ e% (A), b GW (A)
(A, 28)
By Definition A. 7, .‘_A*_T_X = é*-zl € (_A_)-L (A. 29)

Therefore ATa(aly) = aTanfy, = afy -4ty (430
Thereby proving III
of (IV):

(II) and (III) imply (IV) trivially
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of (V).

Let y e’ ® and y=y; vy, with ¥y EW (A), Y, 54 (A)
Then ééTz= é.éT.Xl =Y (see Egqs. A.28-A.30) (A.31)

1

Thus, for any '_z € C n’ _‘A_*.‘_A*.TX =¥ Eﬁ (A) {A. 32)

Theorem A.3 - (AT = (afy (A. 33)

Proof: (see Zadeh and Desoer)

Theorem A, 4 - Let S be the hermitian positive semi-definite

matrix defined by
S=AA (A, 34)

Then,
At = sta (A. 35)

Proof: (see Zadeh and Desoer)

Corollary A2 - Let A be an nxm matrix, n > m, of full rank

(rank m). Then,

Al =@ 'a (A. 36)
Proof: By Theorem A, 4,
Al = @a'afa’ (A.37)

But (é'_é) is a non-singular [actually positive definite]
mxm symmetric matrix. And, the pseudo-inverse of

an invertible matrix is equal to the inverse of the matrix,



APPENDIX B

The computer program used to compute the solutions for the
examples in Chapter‘IH is listed on the following pages., The program-
ming language used is the M. I, T. version of Fortran IV for the IBM
System/360 Operating System and the IBM System/360 Model 44 Pro-
gramming System,

The operation of the program, and of the various subroutines
used, is explained by comment cards preceding each operation. The
data cards needed to provide the program with the input data are ex-

plained in comment cards at the beginning of the listing on the next

page.

-78-
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J/RICCATI JOB (M421993719+42420004750,SRI=0) ' LEVINE*,MSGLEVEL=1
//TEST EXEC FORC,PARM.C='EBCDIC,MAP,DECK?®

//C.SYSIN DD e

THIS IS THE MAIN PROGRAM FOR CALCULATION OF THE OPTIMAL OUTPUT....
FEEDBACK GAINS

INPUT DATA
NedeeaodoossooeeN LS THE DIMENSION OF THE STATE VECTOR (PHI IS MXN)
MevedesecccesdM LS THE DIMENSLON OF THE CONTROL VECIOR (F I$ MXLRY
LRococsescoceslR 19 THE DLMENSION OF THE OUTPUT VECTOR
INTMAX JoooveosdIS THE NUMBER OF TIME STEPS INTD WHICH THE INTERVAL

IS DLVIDED. HENCE, THE TERMINAL TiIME.

ISEE..devecese ]S THE NUMBER OF TIME STEPS BETWEEN BACH PRINTOUT
MAXITSccccooeslS THE MAXIMUM NUMBER OF ITERATLONS WE WILL TRY
MORE«ecoceocece=l SLGNIFIES ADDITIONAL COMPUTATIONS ARE TO BE DONE

THE SECOND DATA CARD SPECIFIES PRINTING FORMATS
THE SECOND, THIRD AND FOURTH FIELDS OF A TYPICAL SECOND CARD

FOLLOW
(* *52E12.3)(°" *44E12.30{"* *, El2.3)
THE ABOVE CARD IS USEABLE FOR N=zé4,M22,LR=},

EPSLQeoceccescas CONVERGENCE OCCURS IF DELTA COST<EPSLO
HooooeovoeoneoeolS THE STEP SIZE < !

AeBeCoQeR+SyPHIO ARE READ BY A READ NAMELISTY

PO G0 00 ©POLCREPCRIDLOTELERECOLOEOITIORODEIDOODDOBDIEN0EH0OSCOPOTCAEARTSIIOOOOECDPOTOD
DIMENSION PN(3),PM(3),PNN(3),PMLR(3)

DIMENSION S12+2)9,Q(2:2)4sR{2:2)4PHI0(242),DUM{2,2)

1 BT(242)eRIB(2:2) yPHI{242)PHIT{242),FEED(262)+5Q0(242¥,.CO9T1(2,21}¢
2 CasST2(2,2)

COMMON CK(242410001),F(2:2,10001)5A(2:2)98{2+2)5C12,2)aH,

1 INTMAX,N,MyLR
‘100 RBAD (553001) NsMyLRsINTMAX,ISEE,MAXI TS, MORE

READ (5,3002) (PN{I)yI=1,43),({PM{J)oJ=193)s(PNNIK)¢K=1s3),
1 (PMLRI(L),L=1,3)

REBAD (5,3003) EPSLO,H

QOO0 OOOON

(9 WE WRITE THE INPUT DATA
HWRITE (6,4001) INTMAX
WRITE (64,4002} EPSLOsH
NAMELIST/ZAP/A;ByCsQeRySpPHIO
READ {5,1AP)
WRITE (6,2001)
WRITE (6,PN} (LA{TI40)4J=1sN)sI=1,N)
WRITE (6,2002)
WRITE (6,PM) ((BII,J)yd=1e4M)sI=1,N)
WRITE (6,2003) .
WRITE (64PN} C{CII,J)J=1sN)oI=21,4LR)
WRITE (6,2004)
WRITE (64PN) ((Q{IoJdad=leN)yI=14N)
WRITE (6,2005)
WRITE (64PM) ({(R{IsJ)ed=1yM),I=1eM)
WRITE (6,2006)
WRITE (64PN} ((SEI1:J)9J=19sN)sI=1,4N)
WRITE (6,2007)



OO OO0

a0

101

192

o0 0o

103

104

a0 00 oo

(g X g

o0 00

105

106
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WRITE (6PN} ({PHIO(I9J)sJ=1oN)oI=1,N)
FLRST STEP OF COMPUTATIONS
178=0

COMPUTATION OF R~INVERSE
DO 101 JU=1,M

DO 101 I=l,M
DUMITI s J)=R 1,3}

CALL VECT (DUM,M)

COMPUTATION OF B°*
B0 102 J=1,M

DO 102 I=14N
BT{Js L)=B{1,J)

R-INVERSE TIMES B-TRANSPOSE IS DEFINED AS RIB
CALL MULY (DUMyBT,RIByMsNsM)

WB KNOW AND STORE K{TERMINAL TIME)=S
DO 103 Jx]l.N

DO 103 1al,N

CRULods INTHAX)=SII,J¥

PHL{1¢d) =PHIO(T,4}

‘PHET(Jo1) =PHIO(I,J)

PS0OL IS USED YO COMPUTE F(O0,T)

CALL PSOLL (PHILRIB,INTMAX,FEED,ITS)
DO 104 L=1, INTMAX

00 104 J=slsLR

03 104 I=1,M

F Iy JoL)=FEEDLL, 3}

COMPUYATION OF THE COST IS SET up
CAMLL MULT (PHIO,PHIT,SQyNyN,N}
CALL MULT (SySQ.COSTL,NaNsN)

RSOL BEGINS THE ITERATIVE LOOP. IT COMPUTES KIN+1l,T) RROM F(N,T)
CALL RSOL (Q,R})

THIS 1S A CHECK ON THE COMPUTATUIONS
WRITE {64PN) (( CKUIsJelleJd=1sN)oI=1,N}
WRITE (64PN} €( CK({T9Je21)yJ=1oN)yI=1sN)

COMPUTATION OF NEW COST

80 106 J=1,N

80 106 I=1,N

PHI{ 143 )2aPHIOUT o &)

COST211,4)=0.0

DO 1066 K2l,N
COST2(1,31=COST2¢TJ)¢CK{I KoL )2SQ{Ks )

THIS CAUSES THE ITERATION COUNTER TO INCREASE BY 1.
ITS=ITS+1

CHECK FOR CONVERGENCE. ONLY AFTER THE THIRD ITERATION



o000 00

116
107

168
109

110

111

ir2

113

1t4
3001
3002
3003
2001
2002
2003
2004
2005
2006
2007
2008
2009
200

‘2011

(aEsEaNa N R 4]

4001
4002

%003
4004
115
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IF (IT8-2) 108,108,116
TRa0.0

DO 107 Iwxl.N
TR=TR4(COSTLI{I1)-COST2{1,51))
IF (TRZEPSLO) 110,1105108

IF CONVERGENCE, IDONE=2 AND WE PRINT DATA, IF NOT, IDONE=1 AND PROCEED

BO 109 I=14N

COSTLEI.,19=COBT241:1)

TDONE=1]

IF (ITS-MAXITS) 113,110,110

I DONG=2

WRITE (654003) TRLITS

WRITE (6,4004) 1SEE

HWRITE (652008}

DO 111 L=l INTMAX, ISEE

WRITE (642009})

WRITE (6¢PNN) ({CK{ToJdsliosJd=leNiglalyN}
BRITE (60,2010}

BO 132 L=1, INTMAX, ISEE

WRITE (64,2009} :

WRITE {(6¢PMLR} ({Filedol)sd=lsLlRIgI=1,M)
WRITE {(642011%

PSOL IS CALLED TO COMPUTE FIN,7) AND PHI(N,T)} GIVEN KI{N,T)
CALL P3OL ({PHI.RIB,IDONE,ISEE,ITS,PNN}

WE HAVE ALREADY DETERMINED CONVERGENCE AND USED THIS TO SE&T IDONE

IF CONVERGENCE,; CHECK FOR MORE DATA. IF NOT, REITERATE.

GO TO (105,114} ,1D0NE

IP (MORE) 115,115,100

FORMAY (716)

FORMAT (3A4¢3A%,3A4,3A4)

FORMAY (2Ell.4)

FORMAT {°0 THE A-MATRIX IS PRINTED BELOW®'}¥

FORMAT (°0 THE B-MATRIX IS PRINTED BELOW®}

RORMAT 1°Q THE C-MATRIX IS PRINVED BELOW®}

FORMAY (°0 THE Q-MATRIX IS PRINTED BELOW®)

FORMAY (°0 THE R-MATRIX IS PRINTED BELOW®)

FORMAY (90 THE S-MATRIX IS PRINTED BBLOW®)

FORMAT (°0 THE INITIAL CONDIVION MATRIX IS PRINTED BELOW®)

FORMAT {°0 THE K-MATRIX IS PRINTED BELOW®)

FORMAY (°0°*)

FORMAY (°*0 THE FEEDBACK MATRIX IS PRINTED BELOW®}

FORMAY {°Q THE TRANSIVION MATRIX IS PRINTED BELOW®)

PORMAF (°*0 THE INTERVAL IS ODIVIDED INTO *,14,* PARTSE®)

FORMAT (°Q COMVERGENCE OCCURS IF DELTA COST IS LESS THAN %.Ell.4¢
® THE STEP SIZE IS=',Ell.4) ' .

FORMAT (°G DELTA COST IS="9Ell.4y*THIS IS ITERATION®y14)

FORMAT (*0 THE QUTPUT MATRICES ARE PRINTED ONLY AT T=® o149 %H*)

END

Y 3
$ 08000906000 00000000008000000000000000CCGEROIVLROERNCOOsOGETN0CSSBEOLIBLIS

SUBROUTINE RSOL

PURPOSE
TO COMPUTE K{N+1,T), GIVEN FiN+1,T)
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COMMENT
INPUT DATA IS PARTLY TRANSEERRED THROUGH COMMON

- N - . 1
B0 000000 000000000 CPCIIHECEB 000900 0IDRIITSIIO0BE0B8ICR00SCSICIdOBOGOTS

SUBRDUTINE RSOL (XQeXR}

DLMENSION XQU242) ¢XR(242)¢XDUMI2+2)4FC1252)14BFCL2+2)sREC(2,2),
1 CFRFC(2,2),ABFL(2,2)4XABFC{25204D(242+4)

COMMON RK{292¢10001) 4XF{252,10001)sXA0242)2XB(292)9XC(242)¢H,y
1 LNTMAXsNoM,LR

COMPUTATION BHGINS AT T=INTMAX, THE TERMINAL TIME
NDELT>INTMAX

FILRST STEP OF RUNGE-KURTA ROUTINE BEGINS
DO 102 J=»1,N

00 102 131,N

XOUME 143 3=RK{ Ly JoNDELT )}

L=0

DO 103 J=1.N

00 103 I=1,M

FOUI,48=0.0

DO 103 K=1,4LR
FCUTpI)=FC{Tsd)#XFIToKeNDELT)*XC{Kod)

CAMLL MULT (XBeFCoBFCyoNeNyM}
CALL MULT {XRuFCoRFCoMyNyM)

B0 105 J>1,.N

00 105 IsleN

CFRFC{I5J)=0.0

DD 106 K=1l,M
CFRFC‘IQJ’=CFRFC(t,J,*FC(K,I)*RFC(K'J)
ABFC(I,43)=XA(I+J)=-BFC(I,J)

LaL+1
CALL MULT (XDUM,ABFC XABFC,NyNsN)

EVALUATION OF THE PARTIAL SLOPE IN RUNGE KUTTA ROUTINE
DO 107 J=1,N

B0 107 I=1,N

BCI,JeL)=H®{XABFC{1oJ)+XABFCIJo I)4XQ{T1,JI4CFRFC(T,J41))

LOGIC FOR ROUTING TO EACH PHASE OF ONE RUNGE KUTTA STEP
GO TO (108,108,110,112),L

BO 109 J=1.,N
DO 109 I=14N
XOUM{ T J)=o5%D{ 1o JoL)+RK{T,Js NDELT)

GO TO 106
00 111 J=1,N

DO 111 I=1,4N
XDUM(I5J)=D{1sJslLI+RK(IyJsNDELT)
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GO 7O 106

CALCULATION OF K(N+1,T~-1)

112 DO 113 J=14N

113

114

100

102

103

DO 113 I=1,N

RK(Ty) JyNDELT-13=RK{IJoNDELT)#{D{1:Jy1142.%D( 1552} 42:.8D(1,J,3)
1 *D{1esdy4)) /6.

TLIME 1S STEPPED BACKWARDS ONE STEP
NDELT=NDELT-1

IF 7 IS NOT ZERD, WE BEGIN THE NEXT STEP. [IF V=0, WE RETURN 70
MAIN.

IF (NDELT-1) 114,114,101

RETURN
END

LA R A R RS AR A2 A AR R E R R R R AR RN R R EE RN RN EE RN N ER RSN YRR E XN SRR Y R ENE X XY ]

SUBRBURINE PSOL

PURPQSE .
TO COMPUTE F{NoT) AND PHI(N,T) GIVEN K{N,T)

COMMENT
INPUT DATA IS PARTEY TRANSFERRED THROUGH COMMON

G PO C D BP0 00DO00OR00000OBONVIBOA0NNERRO0DIOGI00OROTOROOOBOBOTERN@ODOOS

SUBROUTINME PSOL (YPHIoYRIB,IDONE, ISEE,NSTARTsPNN}

DIMENSION PNN{3),FC(2+2) 9y YPHI{Z92)sYRIB(22) o YFEED{(2s2)yCPHI{25210
1l PHIC{2,2) sCPPLI2:2)sDUMLI{2,2),0UM2{2:2)DUM3(242]}+

2 BFC{2,2)9ABFC{2,2);ABPCY{242)

COMMON PK{252410001),YF{2,2+10001)5sYA{2:2),YB{2:2)9YL{292)¢H,

1 INTHAX,NyM,LR

THE VALUE OF ICE DETERMINES WHETHER A VALUE OF PHI I3 PRINTED
IGE=ISEE

COMPUTATION BEGINS AT T7T=0,0R NDELT=1
NDELTw»1

IDONE =2 MEANS THE IVTERATIONS HAVE CONVERGED AND WE WANT TO
COMPUTE THE OPTIMAL PHI., WE DU NOT RECOMPUTE F. IF IDONE=1l, WE
COMPUTE A NEW F AND A NEW PHI.

GO TO {102,106} ¢ IDONE

THIS ENTRY IS USED TO COMPUTE ¥HE INITIAL F.
ENTRY PSOLL (VYPHI,YRIBoNDELT,YFEEDoNSTART)

COMPUTATION OF C TIMES PHI
CALL MULT (YCoYPHI,CPHI+LRyNyN)

COMPUTATION OF C TIMES PHI TRANSPOSE
DO 103 J=14N

DO 103 I=1,4LR

PHIC{J,1)=CPHI(I,J)
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COMPUTATION OF C#PHI®PHI®#(C*
CALL MULTY {(CPHIPHIC,CPPCsLRyLRyN)

COMPUTATION OF NC*PHI®*PHI®**C*) INVERSE
CMLL VECT (CPPC,LR)

ETC. ETC.

CALL MULT (PHIC,CPPC,DUMLl,N,LRyLR}

CALL MULT (YPHI,DUM1,DUM24N,LR¢N}

DO 104 J=1,sLR

DO 104 I=1,N

DUM3{I,J)=0.0

DO 104 K=1,N

104 BUM3(1,J2=DUM3{I4J)+PK{I,KoeNDELT)*DUM2{K,J)

CALL MULT [YRIB,DUM3,YFEEDsM,)LRyN)

YFEED IS NOW THE VALUE OF F AT THIS TIME AND THIS ITERATION

IF NSTART=0, THIS IS F{0,T) AND WE RETURN TO MAIN. IF NSTART O,
W8 CONTINUE '

IF (NSTART) 114,114,112

THLS STORES THE NEW VALUE OF F IN THE PROPER PLACE
112 DO 109 J=1,LR

DO 105 I=1,M
105 YFEI,J)NDELT)=YFEEDIT,J)

.

KNOWING F, WE BEGIN COMPUTING THE VALUE OF PHI AY THE NEXT TIME
106 DO 10k J=leN

DO 101 I=1,M

FCti,Ja)=0.0

8G 101 K=1,LR
101 FOLL430=FClI )4 YF{I KoNDELT)I*YC{KyJ)

CALL MULT (YByFCyBFCyNyNoM)

BO 107 J=1,N
DG 107 I=1,N
107 ABFC{I,J)=YA(I+J4)-BFC{I,J}

IF IDONE=1, WE SKIP THE WRITING ROUTINE. IF IDONE=2, WE WRITE
EVERY ICE VALUES OF PHI
GO T0 ¢(210,109%), IDONE

ROUTINE FOR WRITING PHI
109 ICE=ICE+1
1F (ICE-ISEE) 210,113,113
113 1CE=Q
WRITE (6,1000)
WRITE (6¢PNN) ({YPHI{IyJ)sd=14N)yI=1,N)

CONTINUATION OF THE COMPUTATION OF NEXT PHI
210 CALL MULT (ABFC,YPHI,ABFCYsNsNoN)

DO 108 J=14N
DO 108 I=1+N
108 YPHI(IyJ)Y=YPHI(I,J)+H*ABFLY(],J)
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FORMAT (°0°)

W8 STEP THE TIME ONE STEP
NDELT=NDELT+1

IF WE HAVE REACHED THE TERMINAL TIME, WE RETURN TO MAIN.
IF (NBELT-INTMAX) 100,111,111

IF (IBONE-2)1144115,115

WRITE (651000}

MRITE (6,PNN) ((YPHI(I19J)eJd=1eN)yI=1eN)

RETURN

DBBUG PACKET PRINTS USEFUL DATA
DEBUG SUBTRACE,INIT(YRIB,IDONE)

AT 112

If (NDELT-1) 300,300,301

DLSPLAY DUM3,DUM2,DUM1 CPPC,CPHILFC
CONTINUE

END

SOOI COVDOND 0606000000680 IC ORIV CGBCEC00000000300000SS0NSGSIBNOCOIROEEN

@00 0380008008008 0606000080000C0BEITONTEBCC000CESCERIDTEIGIOROIRESOCOOSISETSIES

SUBROUTINE MULT

PURPGSE
TO COMPUTE THE PRODUCT OF TWO MATRICES.
GAMMA{N X M) = ALPHAIN X L)} *= BETA(L X M)

USAGE
CALL MULTUALPHA,BETA,GAMMA,NyM,L)

DESCRIPTION OF PARAMETERS
ALPHA- N X L REAL MATRIX
BETA - L X M REAL MATRIX
GAMMA- N X M REAL MATRIX
N ~ NUMBER OF ROWS IN ALPHA
M - NUMBER OF COLUMNS IN BETA
L - NUMBER OF COLUMNS (ROWS) IN ALPHA(BETA)

. )
008060000008 0008CRECCCCLOLEDEBCE 0003008 INOCOIC00S0CSIEENOCOSIICOLICECOEOTOITRBOTS

SUBROUTINE MULT(ALPHABETA,GAMMA,NsMsL)
DLMCNSION ALPHA(242)+BETA(2,2),GAMMA(2,2)
00 10 I=14N

DO 10 J=1l.M

GAMMA(L,4)=0.0

B3 10 K=1,L

GAMMA(T , JY=GAMMA( I, J)+ALPHA(TI,K)*BETA(K,J)
CONTINUE

RETURN

ENO

‘
P P 0D 00O VD00 AN0VO RIS 0 3000000008088 00600C5560E000 00880000080 000

SURRNDHRINE VECT

PURPOSE
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TO CONVERT A SQUARE MATRIX TO VECTOR MODE=0,
TO0 CALL THE MATRIX INVERSION SUBROUTINE AND
TO RECONVERT THE INVERTED VECTOR TO MATRIX FORM,

USAGE
CALL VECT(RMAT,M)

DESCRIPTION OF PARAMETERS
M - THE DIMENSION OF THE SQUARE MATRIX
RMAT -~ THE MATRIX TO BE INVERTED AND ITS INVERSE

REMARKS
THE INVERSE IS STORED IN THE LOCATIONS OF THE INPUT MATRIX.

SUBROUTINES REQUIRED
INVERT

0P B VOGO C00OCOVCITCIOLEBE00AR003C000080889CC000000C00DEOOCCOEICGSISIIONTOEES

SUBROUTINE VECT(RMAT,M)
DLMENSION RMAT(2,2) AMAT (%)
MATRIX TQO VECTOR CONVERSION
JNOT=0

JNOT=JNOT+1

IF(M.LT.JNOT)GO TO 180
KONE=1+M&{JNOT-1)
KEND=M*JNOT

00 170 K=KONE,KEND

IwK-M*{ INGT~1)
AMAT{K)=RMAT(I,JNOT)
CONTINUE

G0 T0 150

CONTINUE

MATRIX INVERSION

CALL INVERT(AMAT,M,M)
VBCTOR TO MATRIX CONVERSION
KNOT=M*M

DD 190 K=1,KNOT

Ja(K-1}/M+1

1#K-M*{J-1)
RMAT(19J)=AMA¥(K)
CONTINUE

RETURN

END

OO S PROCOPOODOP PPV POV DPOPPRDROCCEPOISED OO PPN INONTOEDOATORNORREDES

0 00 0800CE000NNBRVNOCEB0080E0000000000C0EV0C00900000000O0CEIRLEEECGCORSIOIOSISTES

SUBROUTINE INVERT

PURPOSE
TO INVERT A REAL SQUARE MATRIX

USAGE
CALL INVERT{AsNNyN)

DESCRIPTION OF PARAMETERS



OOOQOOA0OO0O0

80

90

105

108
i10
112

114

115

-87-

A < REAL SQUARE MATRIX 70 BE INVERTED
NN -~ ORDER OF MATRIX A
N - MAXIMUM ORDER OF A. SET EQUAL TO NN.

MEBTHOD
THE INVERSE OF A IS COMPUTED AND STORED IN A.

RBMARKS
THIS SUBROUTINE IS A SLIGHILY MODIFIED VERION OF THE
I18M SHARE NO. 1533 MATRIX INVERSION SUBROUTINE.

60 00000000800000000000000000600000000CCP0000080008000000CE0000C00880S

SUBROUTFINE INVERT(A,NNeN}
DIMENSION A(4)Y,M12),C(2)
IF{NN.NE.1)}GO TO 80
Atl)¥1./7A(1)

60 YO 300

B S0 I=1oNN

Mil)=~]

CONTINUE

DO 140 I=1,NN

LOCATE LARGESY ELEMENT
Bb=0.0

DO 132 L#1,NN
IFIM(L).GT.0)G0 TO 112
RELN

DO 110 K=1,NN
IF{M{K).GT.0)GO TO 108
IF{ABS{D)~-ABS{A(J)}})10%,105,108
LO=L

KO=K

D=A{J)

JaJ+N

CONTINUE

CONTINUE

INTERCHANGE ROWS
TBMP=-N(LD)

MELD)=M{KD)

M{KD)=TEMP

L=LD

K=#KD

DO 114 J=1,NN

cLay=A(L)

A(L)=A(K)

AlK)=C(J)

Lal+N

K=l +N

DLVIDE COLUMN BY LARGEST ELEMENT
NR=(KO-1)*N+1

NH=NR+N-1

D0 115 K=NRy,NH

A{K}=A(K)/D

REDUCE REMAINING ROWS AND COLUMNS



130

134
135

140

150

200
300

L=1

DO 135 J=1,NN
IF(J.NE.KD)IGO TO 130
L=L+N

GO T0 135

DO 134 K=NR,NH
A(L)=A(L)-CLJII*A(K)
L=i+l

CONTINUE

REDUCE ROW
C{KD)=~1,0

J=KD

DO 140 K=1,NN
AtJI)=-C(K)I/D

JFJ+N

CONTINUE
INTERCHANGE COLUMNS
DO 200 I=1,NN

L=0

L=al+1l
IF{M{L).NEL.T)GO TO 150
K2{L-L)*Ne1
J={I-1)%N+1
MiL)=MI1)

M{I)}=]

DO 200 L=1,4NN
TEMP=A{K)

A{K)=AC())

AtJ)=TEMP

J=d+l

K=K +1

CONTINUE

RETURN

END

2 00 000000000000 CB0E0000CAtEO0000CINo00O0Ee0iEntonodassorededsosesessosss
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